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SUMMARY

Human dental plaque is a complex microbial

community containing an estimated 700 to 19,000

species/phylotypes. Despite numerous studies

analysing species richness in healthy and dis-

eased human subjects, the true genomic compo-

sition of the human dental plaque microbiota

remains unknown. Here we report a metagenomic

analysis of a healthy human plaque sample using

a combination of second-generation sequencing

platforms. A total of 860 million base pairs of

non-human sequences were generated. Various

analysis tools revealed the presence of 12 well-

characterized phyla, members of the TM-7 and

BRC1 clade, and sequences that could not be

classified. Both pathogens and opportunistic

pathogens were identified, supporting the ecolog-

ical plaque hypothesis for oral diseases. Mapping

the metagenomic reads to sequenced reference

genomes demonstrated that 4% of the reads

could be assigned to the sequenced species. Pre-

liminary annotation identified genes belonging to

all known functional categories. Interestingly,

although 73% of the total assembled contig

sequences were predicted to code for proteins,

only 51% of them could be assigned a functional

role. Furthermore, � 2.8% of the total predicted

genes coded for proteins involved in resistance

to antibiotics and toxic compounds, suggesting

that the oral cavity is an important reservoir for

antimicrobial resistance.

INTRODUCTION

The human oral cavity is colonized by a complex

microbial community that plays an important role in

dictating the oral health status of the host (for review,

see Marsh, 1994, 2006; Haffajee & Socransky, 2005,

2006; Socransky & Haffajee, 2005; Paster et al.,

2006). Oral diseases (such as dental caries, peri-

odontitis, halitosis) develop as a result of major dis-

ruptions of the ecological balance in the oral

microbial community as the result of environmental

changes in the oral cavity. Consequently, it is of par-

amount importance to understand the genomic com-

position of the oral microbial community and the

forces that shape this ecological balance to prevent

and manage the progression of disease. In the past

50 years, numerous studies have characterized the

community composition of the oral microbiota (Kroes

et al., 1999; Paster et al., 2001, 2006; Becker et al.,

2002; Kumar et al., 2003; Aas et al., 2005, 2008;

Preza et al., 2008). Using culture-dependent and

independent methods, estimates of oral biodiversity
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have implicated >700 different microbial species

(Socransky et al., 1998; Kroes et al., 1999; Paster

et al., 2001, 2006; Aas et al., 2008). Recently, sev-

eral studies have employed next-generation sequenc-

ing technologies to analyse the species richness of

the oral microbiota (Keijser et al., 2008; Lazarevic et

al., 2009; Zaura et al., 2009). Estimates from one of

these studies suggested that up to 19,000 phylotypes

may exist in the human oral cavity (Keijser et al.,

2008). Despite these tremendous advancements in

our understanding of community structure, only a

minute fraction of the genomic content within the pla-

que community is known. As a result, even less is

known about the ecological roles of most of these

species/phylotypes in mediating plaque homeostasis.

In this study, we conducted a shotgun metagenomic

analysis of dental plaque from a healthy human vol-

unteer using a combination of 454 and Illumina

sequencing platforms. Using this approach, we were

able to successfully assemble the first gene catalog

of the dental plaque microbiota. In the process, we

also developed new strategies for metagenome

sequence assembly and data analysis. With these

data, we were able to obtain the first glimpse of the

genomic contents of a human plaque microbiota.

METHODS

Plaque collection and DNA isolation

Upon Institutional review Board approval (#14107),

supragingival and subgingival plaques were collected

from a caries-free and periodontally healthy volunteer

using sterile toothpicks for supragingival plaque, ster-

ile curettes for subgingival plaque, and dental floss

for interproximal regions. To increase plaque accumu-

lation, brushing and flossing were restricted for 24 h

before the plaque samples were taken. Plaque from

eight teeth (four anterior and four posterior) were col-

lected, combined, and suspended in an Eppendorf

tube containing 480 ll 50 mM ethylenediaminetetra-

acetic acid. Freshly prepared lysozyme was added to

a final concentration of 10 mg ml)1, and the tube was

incubated at 37�C for 3 h. For total chromosomal

DNA isolation, the Wizard Genomic DNA Purification

kit (Promega, Madison, WI) for bacteria was used.

DNA was isolated following the manufacturer’s

instructions. We were able to obtain 15 lg high-

quality DNA, which was sufficient for sequencing.

Sequencing and quality control

Metagenomic DNA sequence data were generated

using a combination of two sequencing technologies,

the Roche 454 FLX system using titanium kits and

version 2.3 software, and the Illumina Genome Ana-

lyzer IIx (76 cycles) using sequencing control soft-

ware version 2.5 and version 3.0 cluster generation

and sequencing kits. The resulting 454 and Illumina

reads were subjected to quality filtering using the

LUCY program (http://lucy.sourceforge.net/) (Chou &

Holmes, 2001), which discarded reads with poor

quality and trimmed low-quality regions. Contami-

nating host sequences were removed after detecting

top significant hits to human sequences using a

BLASTN search (Altschul et al., 1990, 1997) of the

GenBank non-redundant sequence (NR) database.

Metagenome assembly, mapping, and annotation

The curated 454 and Illumina data were assembled

using the NEWBLER (http://www.454.com/products-solu

tions/analysis-tools/gs-de-novo-assembler.asp) and

VELVET (http://www.ebi.ac.uk/�zerbino/velvet/) pro-

grams, respectively. A number of different hybrid

assemblies of combined 454 and Illumina reads were

performed varying parameters for fragment length and

estimated coverage, and the best assemblies, based

on contig sizes and total number of base pairs assem-

bled into large contigs, were selected as the final com-

bined assembly.

Metagenome Rapid Annotation using Subsystem

Technology (MG-RAST; http://metagenomics.nmpdr.

org/) (Aziz et al., 2008) and the Integrated Microbial

Genomes (IMG) system with Microbiome Samples

Expert Review (IMG-M ER) (http://img.jgi.doe.gov/

mer/) (Markowitz et al., 2008) served as a base

annotation. The read-based MG-RAST annotation

used BLASTX (ver. 2.0.11 (Altschul et al., 1990)) simi-

larity search against the SEED subsystems (an anno-

tation/analysis tool provided by FIG (The Fellowship

for Interpretation of Genomes); http://www.theseed.

org/wiki/index.php/Home_of_the_SEED) (Overbeek

et al., 2005). A histogram of the distribution of 454

reads GC% and the distribution among five major

phylotypes assigned by using the MG-RAST annota-

tion is shown in Fig. S1. The species/phylotype level

taxa were estimated by counting how many reference

genomes all 454 reads matched using the MG-RAST
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‘Phylogenetic Profile’ feature. Ribosomal RNA (rRNA)

and putative virulence-related genes were flagged

using the MG-RAST program (Aziz et al., 2008).

The IMG-M annotation is based on the combined

approach of the BLASTX similarity search and de novo

gene prediction. Basically, metagenomic sequences

were split into three bins: 80–299 base pairs (bp),

300–699 bp, and ‡700 bp. For the shortest bin, MULTI-

BLASTX was used against the IMG version of the non-

redundant database (IMG-NR) with an out-of-frame

penalty of 25, which detects frame-shifted genes. All

frameshift fragments are joined afterwards. For the

mid-length bin, MULTIBLASTX (Carter et al., 2001), meta-

genomic versions of METAGENE (http://metagene.cb.k.

u-tokyo.ac.jp/) (Noguchi et al., 2006) and GENEMARK

(http://exon.biology.gatech.edu/) (Zhu et al., 2010),

were used with the preference given to the genes

predicted by MULTIBLASTX, then by GENEMARK (in the

spaces between MULTIBLASTX genes), then by

METAGENE. For the longest bin, only METAGENE and

GENEMARK were used with the same order of prefer-

ence (GENEMARK > METAGENE).

In-house GenBank similarity searches for 454

and Illumina reads

Both BLASTN and BLASTX similarities were performed in

parallel on an Intel-based cluster using the National

Center for Biotechnology Information (NCBI) BLASTALL

program (version 2.2.21). BLASTN was used to find

similarities of all Illumina reads (partitioned into

991 files of approximately 15,000 reads each) with

sequences in the GenBank NT (non-redundant

nucleotide database) database (i.e. all GenBank,

European Molecular Biology Laboratory, DNA Data

Bank of Japan and Protein Data Bank sequences,

but no expressed sequence tags, sequence tagged

sites, Genome Survey Sequences, environmental

samples or phase 0, 1, or 2 high throughput genomic

sequences), downloaded on 7 March 2010. BLASTX

was used to find more distant similarities between

454 reads (partitioned into 114 files of approximately

1000 reads each) and sequences in the GenBank

NR database (i.e. all non-redundant GenBank coding

region sequence translations, Protein Data Bank,

SwissProt, Protein Information Resource and Protein

Research Foundation sequences, but no environmen-

tal samples from Whole Genome Shotgun projects),

downloaded on 5 April 2010. The size of the dataset

made the BLASTX of Illumina reads computationally

prohibitive.

Community composition profiling

Multiple complimentary methods were used to assess

the Community Composition.

1 16S rRNA-based approach: 454 reads with similar-

ity to rRNA were first identified in MG-RAST (http://

metagenomics.nmpdr.org/), and then searched

against the ribosomal RNA databases [Ribosomal

Database Project (RDP), Silva ssu rRNA, and Green-

gene] using BLASTN with an e-value cut-off of 1e)5 and

a minimum alignment length of 50 bp. Similarly,

BLASTN comparisons of these reads were made

against the Human Oral Microbiome Database

(HOMD; http://www.homd.org) 16s rRNA sequences.

2 Phylogenetic marker protein-based approach:

Protein files from both MG-RAST and IMG-M ER

annotations were used as input for the AMPHORA

program (Wu & Eisen, 2008). Homologs of the 31

pre-built phylogenetic marker genes were extracted.

Each marker gene sequence identified from this

analysis was individually aligned to the correspond-

ing reference sequences, trimmed using a pre-built

mask, and inserted into the reference tree using

the RAxML (Stamatakis, 2006) maximum parsimony

method with 100 bootstrap replicates to assess the

confidence of the branching order. A tree-based

bracketing algorithm was then employed as

described in Stamatakis (2006) to assign a phylo-

type to each query sequence. Starting from the

immediate ancestor of the query sequence and

moving toward the root of the tree, the first internal

node (N1) whose bootstrap support exceeded a

cut-off of 70% was identified, and the common

NCBI taxonomic level, shared by all descendants of

this node, represents the most conservative taxo-

nomic prediction for the query sequence. The taxo-

nomic rank assignment for each sequence is

summed to assess both organism identity and rela-

tive abundance.

3 Gene-based approach: all 113,000 454 reads

were searched against the GenBank NR database

using BLASTX, followed by MEGAN (Huson et al.,

2007) analysis. This software reads the results of a

BLAST comparison as input and attempts to place

each read on a node in the NCBI taxonomy. This

is performed by the Lowest Common Ancestor

G. Xie et al. Metagenome of human dental plaque
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algorithm, which assigns each read to the lowest

common ancestor in the taxonomy from a subset

of the best scoring matches in the BLAST result with

default value settings. The 454 reads that have no

BLAST matches are assigned to the special node ‘no

hits’ and those unassigned for algorithmic reasons

(e.g. below an applied threshold) are placed on the

special node ‘unassigned’. The result of the analy-

sis is displayed as a tree representation of the

NCBI taxonomy. Meanwhile, all 454 reads and all

contigs obtained from the 454 plus Illumina hybrid

assembly were searched against the SEED and

IMG databases, respectively, using BLASTX and

BLASTP, and the top BLAST-based taxonomy assign-

ment was obtained through both MG-RAST and

IMG-M ER servers.

Metagenome sequence recruitment

An in-house sequence recruitment program was used

to align each read to reference genomes or genomic

fragments. The mapping of 454/Illumina reads

against 454 contigs was performed by the MOSAIK

aligner (http://bioinformatics.bc.edu/marthlab/Mosaik)

with 0.05% mismatch and the number of aligned

reads was used to estimate the sequence coverage

and abundance profile of that contig in the sampled

community. Furthermore, the Human Microbiome

Project (HMP) oral reference genomes were down-

loaded from the HMP DACC website (http://www.

hmpdacc-resources.org/) and concatenated as a

large reference sequence for alignment with all 454

and Illumina reads using MUMmer (Kurtz et al., 2004).

Coordinate files produced from MUMmer alignments

were parsed using an in-house developed JAVA pro-

gram and alignment plots of the 454 and Illumina

reads against the reference sequences were created

using an R script (http://www.r-project.org/).

Ecosystems comparison

Different ecosystem datasets were downloaded

from the MEGAN website (http://www-ab.informatik.

uni-tuebingen.de/software/megan/comparative): the

selected marine metagenome data are based on

� 145,000 Sanger reads that were randomly sam-

pled from the Global Ocean Survey project (Yoo-

seph et al., 2007); data of the soil metagenome are

based on � 140,000 Sanger reads from the Iowa

soil sample (Tringe & Rubin, 2005); the mouse gut

summary dataset (obese1) is based on � 675,000

454 reads (Turnbaugh et al., 2006) and the human

gut metagenome is based on � 145,000 Sanger

reads from (Gill et al., 2006). After multiple datasets

were loaded, MEGAN was used to compare the num-

ber of reads that have been assigned to each node

(normalized based on the sample size) from differ-

ent datasets. For phylogenetic diversity comparison,

the NCBI taxonomy tree was collapsed at phylum

level and a bar chart summarizing the number of

reads assigned at the desired rank of the NCBI

taxonomy was generated. Meanwhile, the prokary-

otic attributes were also obtained using MEGAN. The

NCBI ‘Prokaryotic Attributes Table’ that lists the

attributes of microbes, such as their cellular fea-

tures, environment, temperature, pathogenicity, and

relevance for diseases, was downloaded and repre-

sented as nodes in tree view. If a taxon had been

detected at the species level by MEGAN and this

organism was known to have a certain attribute, it

would be inserted as a child node beneath this

property node. A broad overview about the physio-

logical and environmental features of microbial

organisms within metagenome samples were

obtained by using this microbial attributes feature of

MEGAN.

The functional comparison of three ecosystems

(human oral, human gut, and mouse gut) was con-

ducted using the MG-RAST Metagenome Heat Map

feature, which computes the metabolic profiles

based on SEED subsystem classifications of all

454 reads. A minimum e-value of 1e)5 was used

as the cut-off to identify unique genes for each

ecosystem and the intersection of genes among

them. Meanwhile, both Function Comparisons and

the Functional Category Comparison feature of

IMG-M ER were used to compare all predicted

genes from dental plaque with two human gut sam-

ples (Gill et al., 2006), in terms of the relative

abundance of the protein families (Clusters of

Orthologous Groups of proteins; COGs) and the

genes assigned to different functional categories

(COG Pathway, Pfam Category, TIGRfam sub-

roles), with estimates of the statistical significance

of the observed differences. The comparison result

includes an assessment of statistical significance of

the relative frequencies of the genes assigned to

different functional categories.

Metagenome of human dental plaque G. Xie et al.
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Data sharing

The metagenome data have been deposited in the

MG-RAST database http://mg-rast.mcs.anl.gov/mg-

rast/FIG/linkin.cgi?metagenome=4446622.3, and can

be accessed after registration with the web server.

Raw sequence reads can also be downloaded from

the Oralgen site at http://www.oralgen.lanl.gov/

oralgen/downloads/supplemental_files/supplemental_

files.html.

RESULTS AND DISCUSSION

Metagenomic sequencing of a human dental

plaque microbiome

To obtain a first glimpse of the metagenomic composi-

tion of the human dental plaque microbiome, we

sequenced the plaque sample of a caries-free and

periodontally healthy human volunteer using the mas-

sively parallel sequencing platforms 454 Titanium and

Illumina GA iiX. To ensure enough DNA was obtained

for sequencing (each sequence platform requires 5–

10 lg high-molecular-weight DNA), both supragingival

and subgingival plaques were taken from eight teeth

and combined. A total of 15 lg DNA was obtained.

This is probably the maximal amount of DNA one could

obtain from a healthy subject without the volunteer suf-

fering more than 1 day of no oral hygiene.

To obtain the sequence, one quarter-channel of a

454 and one lane of Illumina were used for this sam-

ple. The 454 run yielded �1 77 K reads compared with

� 16 M reads from Illumina. These reads were first

checked for quality, which showed that � 176 K 454

reads (99%) and � 15 M Illumina reads (91%) were of

high quality (quality score >20), indicating that our

sequencing protocols were highly effective. Next, the

reads were analysed for host contamination using a

BLASTN search of the GenBank NT database, followed

by parsing any top BLAST hits to human chromosomes.

Our results indicated that approximately one-third of

the reads were of host (human) origin (see Table S1).

This manageable level of human contamination sug-

gests that plaque DNA sample collection and prepara-

tion procedures were appropriate. It should be noted

however that if samples are to be taken from deep

periodontal pockets, fluid in the pocket should be

removed before plaque on the tooth surface is taken to

avoid high human cell contamination.

After eliminating the human-like sequence reads,

the remaining sequences of each technology were

assembled separately using an optimal assembler

(NEWBLER for 454 data and VELVET for Illumina plus

454 data). We used the VELVET assembler to combine

Illumina and 454 reads and used a number of assem-

bly parameters for each data input, which resulted in

contigs that differed quantitatively from one another

(see Table S2). This combined strategy yielded

around 3.2–15.2X more total assembled base pairs

and 9.2–86.9X more total number of contigs, as well

as up to 6.9X longer contigs when compared with the

454 alone contigs, depending on which parameter

was used. The VELVET hash size 35 was considered

to have the best assembly based on the amount of

cumulative data assembled into the largest contigs.

This study represents one of the first to combine two

of the most recent complimentary platforms, without

the use of traditional (and longer) Sanger sequencing

data, to generate and assemble a metagenome. We

have shown that the deep sequencing using short

reads from Illumina complement the longer, and

therefore easier-to-assemble, 454 reads to generate

longer contigs. It appears that for metagenomes such

as this one, such a ‘hybrid’ approach yields the best

results, although further study is required to see if

more coverage using only one platform would be

sufficient.

Community composition of the plaque

microbiome

With a combination of complementary strategies (see

Methods), we were able to obtain a largely unbiased

assessment of the community composition of a den-

tal plaque microbiome. The assessment of both

organism identity and relative abundance from read-

based methods are summarized in Fig. 1 and

Table 1. Although some differences exist among dif-

ferent analysis methods in terms of proportion of the

predicted phyla within the combined sequencing pool,

the relative proportions of major phyla, (i e. Firmi-

cutes, Proteobacteria, Actinobacteria, Fusobacteria,

and Bacteroidetes) are similar between different

methods. Moreover, at the phylum level, these data

were also consistent with previous 16S rRNA-based

community profiling surveys (Keijser et al., 2008;

Zaura et al., 2009). The only exception is a recent

Illumina 16S rRNA survey that targeted the variable

G. Xie et al. Metagenome of human dental plaque
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region V5 (Lazarevic et al., 2009), which showed an

extremely low representation of the Bacteroides phy-

lum. However, this was also noted by the authors of

the study and was suggested to be the result of clas-

sification bias for the specific region or methods used

in that study (Lazarevic et al., 2009).

It is also worth noting that some differences exist

among the different databases used in the homology-

based taxonomy assignment of 16S reads. For

example, using Silva SSU, the Firmicutes represent

9.62% of the total population, whereas the other da-

tabases provided estimates ranging from 16.83 to

21.47% (Table 1). The reason is that Silva SSU has

over 600 K sequences and is six times larger than

RDP and Greengene. Typically, a larger database

will result in increased e-values, which reduces the

number of reads that pass the blast cut-off (1e)5 and

minimum alignment = 50 bp). Silva results also

assigned more reads as unclassified bacteria for the

same reason. Despite these few differences, the

majority of phylum-level classifications are similar

regardless of the database used. In addition, pre-

dicted gene-based taxonomy assignments, such as

BLASTX vs. NR or SEED, and BLASTP vs. IMG data-

base, yielded similar results for all major phyla except

TM7, which was not found with SEED. This is

because only finished and draft genome sequences

were deposited in the SEED subsystem database

and protein sequences are not available for TM7, as

opposed to the 16S RDP, Silva SSU, and Greengene

installed at the SEED database. From these data, we

conclude that, despite mostly congruent taxonomic

predictions for major phyla within the oral cavity, dif-

ferent approaches (methods and databases) need to

be tested to obtain an accurate estimation, particu-

larly for the minor phyla.

It is also noted that the 16S rRNA-based analysis

(RDP, Silva, SSU, Greengene, and HOMD) gives

similar estimates of microbial composition as marker

gene-based assays (AMPHOA; see Fig. S2). The

slight differences between these two strategies are

likely caused by large variations in the rRNA gene

copy numbers among different species. The phyloge-

netic markers used in this study are all single-copy

Figure 1 Proportions of taxonomic assignments at the phylum level. Four hundred and fifty-four reads assigned to each major phylum are

represented by bars in the histogram. Their relative height represents the percentage of reads that can be placed at phylum level of taxon-

omy using 454 reads with a BLASTX search of the SEED database (cut-off 1e)5), 454 BLASTN against RDP, Silva SSU, Greengene (cut-off 1e)5

and minimum alignment length 50 bp), Forsyth HOMD 16S rRNA REFSEQ Version 10.1 (cut-off 0.0001), and MEGAN analysis megablast

against GenBank NT (minscore = 35.0 minscorebylength = 0.0 toppercent = 10.0 winscore = 0.0 minsupport = 5) and Amphora analysis N0

(the immediate ancestor) and N1 (the first internal node) values. The three columns on the right (v5 16s illumina, 16s saliva, 16s plaque)

were taken from references (Keijser et al., 2008; Lazarevic et al., 2009) for comparison.
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genes. Therefore it should theoretically give a more

accurate estimation of the microbial composition.

Another factor affecting both 16S rRNA-based and

phylogenetic marker gene-based analyses using the

454 reads is that <1% of the reads encode the 16S

and marker genes. Considering the low sequencing

coverage of 454 reads, these methods only represent

a snapshot of the community and might underesti-

mate the less abundant organisms through under-

sampling. To overcome this limitation, multiple com-

plimentary methods should be employed when

assessing community composition.

Overall, we were able to detect 668 bacterial phyl-

otypes in the metagenome sequence of this dental

plaque microbiome (see http://mg-rast.mcs.anl.gov/

mg-rast/FIG/linkin.cgi?metagenome=4446622.3 and

Table S3 for detailed assignments). Of these, 382

16S rDNA reads had significant similarity to the

HOMD 16S reference sequences (Table S3) and the

remaining 58 reads could not be assigned to any

species/phylotypes, suggesting novel species/phylo-

types. This level of diversity is substantially higher

than previous estimates of � 100–200 species/phylo-

types per person (Aas et al., 2005; Paster et al.,

2006; Nasidze et al., 2009), but is within the range

reported by a recent 16S pyrosequencing study

(Zaura et al., 2009). Taken together, these results

suggest that a combination of 454 and Illumina ran-

dom shotgun sequencing is sufficient to achieve com-

parable community diversity coverage, and possibly

with less bias than targeted 16S-based community

profiling surveys.

It is important to note that, as with other community

sequencing efforts, the oral metagenome determined

here is a collection of genomic fragments and not all

members of the community are equally represented,

nor do they necessarily have large portions of their

genome represented, particularly if they are rare

community members. In fact, despite the exceptional

depth of our sequence coverage, some species are

still probably represented by only a handful of reads.

Therefore, although this study has generated many

thousands of contigs that range in size from hun-

dreds of bp to >29 kb with ‘sufficient’ sequence aver-

age coverage (from 3.5-fold to 27.5-fold) for

adequate functional and phylogenetic interpretation,

using contig data alone is difficult for obtaining an

accurate genomic abundance profile for the entire

community.

Mapping the metagenome reads to reference

genomes

Because a number of oral reference genomes are

currently available, we mapped all of our sequencing

reads against the HMP oral reference genomes to

assess the coverage and abundance of these

sequenced references or close neighbors within the

plaque community. The number of 454 and Illumina

reads recruited by the 50 oral reference genomes

was � 500,000, or roughly 4% of the total (12 million)

non-human reads (Fig. 2A,B). The top 10 species

that matched to the reference genomes are from five

major phyla (Bacteroidetes, Actinobacteria, Firmi-

cutes, Proteobacteria, Fusobacteria), which is consis-

tent with our community profile data shown in Fig. 1,

Tables 1 and S3. The top two Streptococcus recruits

were from Streptococcus mitis NCTC 12261 (1.7 Mb

recruited size and 40% genome coverage) and Strep-

tococcus sanguinis SK36 (1.7 MB recruited size and

32% genome coverage) with 22 K reads of 97% iden-

tity at the DNA level. This result is consistent with

these two species being prominent members of the

pioneer plaque community. Interestingly, the number

of reads (12 K) recruited by Streptococcus gordonii

Challis substr. CH1 (0.8 Mb recruited size and 20%

coverage), another prominent member of the pioneer

dental plaque community, is lower than the recruit-

ment (17 K) by Streptococcus pneumoniae TIGR4

(1.0 Mb recruited size and 19% coverage), a typical

member of the human nasopharyngeal and oral flora.

Surprisingly, the top five recruits were Capnocytoph-

aga gingivalis JCVIHMP016 (87 K reads, 6.8 Mb,

and 68% genome coverage), Corynebacterium ma-

truchotii ATCC 33806 (49 K reads, 4 Mb, and 54%

genome coverage) and ATCC 14266 (� 49 K reads,

4 Mb, and 54% coverage), Capnocytophaga sputige-

na (� 37 K reads, 2.7 Mb, and 44%), and Capnocy-

tophaga ochracae (� 25 K reads, 2.2 Mb, and 41%).

This is contradictory to the common belief that the

streptococci are the predominant species in the pla-

que community. A likely explanation for this discrep-

ancy is that this individual uniquely harbors more of

these species. Future studies of sequencing more

samples from a large number of individuals will help

to resolve this issue. Another possible reason for this

discrepancy is that the streptococcal strains in this

plaque are divergent from the streptococcal strains

represented in the reference genome database.
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A

B

Figure 2 (A) Metagenome fragment recruitment using 454 plus Illumina reads against the HMP and Oralgen reference genomes. Fragment

recruitment was performed with MUMMER. For all reference genomes, the contigs are concatenated and arranged by length along the x-axis,

as indicated by the tick marks. Percentage identity is shown along the y-axis. The red and blue dots denote the forward and reverse direction

matches, respectively. (B) 454 and Illumina reads recruitment by 50 HMP reference genomes. Percentage of reference genome coverage is

shown along the y-axis on the right. Number of sequence reads recruited by reference genome is shown along the y-axis on the left.
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Indeed, most of the sequence reads (96%) in this

study cannot be mapped with high confidence to any

of the 50 reference genomes based on high similari-

ties at the DNA level. This speculation is consistent

with our other observations. For example, Fig. 2A

shows that 60% or 30 reference genomes have

<10% genome coverage from the recruited frag-

ments. Among the 40% or 20 remaining references,

the recruitments are not evenly distributed, with about

seven genomes having more recruitments at 90–97%

identity levels. When 90% identity cut-off was tested,

four streptococci showed a 26–75% increase in

recruitment size (bp) and 15–41% increase in gen-

ome coverage (see Table S4). Two other species,

Neisseria subflava NJ9703 and Actinomyces naes-

lundii MG1, also showed a 51 and a 106% increase

in recruitment size, respectively. This observation

suggests that the current HMP reference genomes

could serve as a starting point for reconstruction of

microbial genomes from metagenomic sequences;

however, more strains of each species need to be

sequenced to cover the intra-species diversity. It

should also be noted that the percentage of species

matched to the reference genomes by no means

reflects the percentage of these species in the

metagenome, because only 4% of the total reads

could be matched to the reference genomes.

Functions encoded by the plaque microbiome

A preliminary assessment of the functional capacity

of the plaque microbiome was determined by sub-

jecting 454 reads, as well as the contigs obtained

from the 454 plus Illumina hybrid assembly, to auto-

mated annotation using publicly available pipelines

(MG-RAST and IMG-M ER). The high-level results

are summarized in Table 2. As a result of the size

of the dataset, the annotation of Illumina reads is

computationally prohibitive, except mapping them to

HMP oral reference genomes at the DNA level

using MUMMER. Among all 454 reads submitted to

MG-RAST, � 50% could be assigned to metabolic

subsystems based on top BLASTX hits to SEED and

were sorted into functional categories (see http://mg-

rast.mcs.anl.gov/mg-rast/FIG/linkin.cgi?metagenome=

4446622.3 for detailed information). In contrast,

among all 454-Illumina contigs submitted to IMG-M

ER, � 73% of the total sequences were predicted to

Table 2 Comparison of MG-RAST and IMG-M ER annotation of 454 reads and contigs obtained from the 454 plus Illumina hybrid assembly

Annotation submissions MG-RAST 454 reads MG-RAST 454 + illumina contigs IMG M 454 + illumina contigs

Total no. of sequences 109,708 128,556 113652

Total sequence size (bp) 43,613,321 29,276,210 27,411,856

Shortest sequence length (bp) 51 69 69

Longest sequence length (bp) 746 39586 39586

Average sequence length (bp) 397.54 227.73 227.73

Phylogenetic profile Blastx against SEED (1e)5) Blastx against SEED (1e)5) Blastp against IMG (30% identities)

Classified 70.44% (77278) 54.23% (69715) 73.11% (83099)

Non-classified 29.56% (32430) 45.77% (58841) 26.88% (30553)

Total 100% (109708) 100% (128556) 100% (113652)

Domain level

Archaea 0.38% (295) 0.24% (169) 0.08% (67)

Bacteria 88.83% (68644) 55.63% (38783) 99.47% (82662)

Eukaryota 0.89% (685) 0.36% (252) 0.12% (106)

Virus 0.00% 0.00% 0.22% (189)

Other 9.9% (7654) 43.77% (30511) 0%

Total 100% (77278) 100% (69715) 100% (83099)

Function annotation Blastx aginst SEED subsystem Blastx aginst SEED subsystem IMG gene prediction

Coding 50.58% (55488) 37.80% (48600) 72.72% (19934878 bp)

Non-coding 49.42% (54220) 62.20% (79956) 27.28% (7476978 bp)

Total 100% (109708) 100% (128556) 100% (27411856 bp)

Protein coding with function prediction 96.77% (53640) 96.79 (47042) 50.60% (43956)

Protein coding without function prediction 3.33% (1848) 3.21% (1558) 48.36% (42006)
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code for proteins, among them 50.6% (or 43,956

genes) had predicted functions. The slightly more

and better gene prediction for the hybrid 454-Illumina

contigs (73% of coding region vs. 50%) is most likely

the result of the longer contig sequence. Despite the

fact that IMG-M ER and MG-RAST used different

annotation approaches, the overall COG category or

Subsystem function assignment is about the same.

The predominant functional categories included car-

bohydrate metabolism (11.88% of the assigned

reads), amino acids and derivatives (7.89%), pro-

teins (9.34%), cofactors, vitamins, prosthetic groups,

and pigments (6.26%); cell wall and capsules

(5.24%), RNA metabolism (4.53%), DNA metabolism

(6.07%), nucleoside and nucleotide metabolism

(3.55%), membrane transport (3.16%), cell division

(2.1%), respiration (3.53%), regulation and cell sig-

naling (1.31%), fatty acid and lipid metabolism

(1.27%), motility and chemotaxis (1.11%), phospho-

rus metabolism (1.07%), and sulfur metabolism

(1%). The relative abundances of the different COG

categories and pathways based on IMG-M ER anno-

tation by extracting all COG identifiers from the BLAST

output is summarized in Table S5.

Interestingly, the fourth largest percentage of reads

was assigned to the functional category of virulence

(6.46%), with an additional 2.35% of the reads

assigned to functions involved in stress responses.

Furthermore, 42% of the reads belonging to the viru-

lence gene category (or 2.79% of total reads) encode

proteins with putative functions related to antibiotic

and toxin resistance, and a further 25.59% (or 1.69%

of total reads) were related to iron scavenging. In light

of the recent finding that the human microbiota may

be a reservoir for antibiotic resistance genes (Som-

mer et al., 2009), the abundance of this functional

category is of great interest. These include functions

involved in resistance to the major classes of antibiot-

ics, such as b-lactams, aminoglycosides, fluoroquinol-

ones, and the peptide antibiotic bacitracin, as well as

general multidrug or heavy-metal resistance functions

such as efflux pumps. These findings could have

significant implications for the spread of drug resis-

tance to human pathogens, because the oral cavity is

a portal of entry for numerous pathogens that cause

systemic infections. Further investigations are needed

to determine the relationship between antibiotic resis-

tance genes in the oral microbiome and those found

in antibiotic-resistant pathogens.

Overall, 660 functional gene groups were detected,

with multiple sequences in each group. These data

will serve as an important resource for the dental

research community, both in terms of its use as a

benchmark for further detailed analysis of the plaque

microbiome, including refined analysis of this current

dataset, or used for other oral community investiga-

tions such as gene expression (metatranscriptome)

studies in health or disease.

Comparison of the dental plaque microbiome

with other microbiomes

A number of metagenomic datasets from other eco-

systems are now available in the public domain, so

we compared the plaque microbiome with other

microbiomes from scientific curiosity. Four microbio-

mes were used for the comparison: (i) the human gut

(Gill et al., 2006); (ii) the obese mouse gut (Turnb-

augh et al., 2006); (iii) the soil (Tringe & Rubin,

2005); and (iv) the ocean (Rusch et al., 2007). Three

aspects of these datasets were compared: (i) taxo-

nomic distribution, (ii) physiological properties, and

(iii) array of biochemical functions predicted.

At the taxonomic level, dramatic differences were

observed in a number of taxa among the different

ecosystems. For example, the marine environment

harbors the largest proportion of Proteobacteria, fol-

lowed by the dental and the soil microbiomes,

whereas the human gut harbors the lowest level

(Fig. 3A). In contrast, the human gut harbors the

highest proportion of Firmicutes, followed by the

dental plaque and the obese mouse gut, whereas

few Firmicutes are found in the soil and the marine

environments. Some taxa such as Fusobacteria and

the TM7 Division are most often seen in the dental

plaque microbiota, whereas the Fibrobacteres and

the Acidobacteria groups are predominant in the soil

microbiome. Interestingly, the Actinobacteria is found

to be highly abundant in the human dental plaque

and the human gut, but not in the obese mouse gut.

At the physiological level, dramatic differences

were also observed among the different microbiomes.

For example, the human gut harbors more predicted

anaerobic and host-associated microorganisms

than the dental plaque, whereas the latter harbors

more organisms with ambiguity in a number of

defined parameters, such as oxygen or temperature

requirements, gram-positive or gram-negative, and
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specialized or mixed habitats (e.g. aquatic, terrestrial,

or host-associated) (Fig. 3B). These differences may

reflect the variable environmental conditions within

the oral cavity (i.e. large variability in oxygen levels

and temperature as a result of the opening and clos-

ing of the mouth during the day and night), compared

with the constant body temperature and general

anaerobic environment within the gut. In addition, the

gut microflora and the gut epithelial cells constantly

interact with each other, whereas on the tooth’s

surface such interactions are rare or non-existent,

except within the deep periodontal pockets.

Interestingly, when the functional genes were com-

pared at Subsystem hierarchy level 1 (group level of

subsystems such as amino acid and derivatives), the

two human microbiomes and mouse microbiome had

A

B

Figure 3 (A) Summary of the comparison of the dental plaque (red), human gut (blue), mouse gut (green), soil (yellow), and marine

(magenta) datasets, generated at phylum level ranks. (B) Summary of the comparison of the microbial attributes of dental plaque (red),

human gut (blue), mouse gut (yellow), soil (magenta) and marine (green) datasets based on the NCBI’s ‘Prokaryotic Attributes Table’. In the

bar chart, the number of classified species having the indicated property is displayed.
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almost identical distribution and abundance of func-

tional groups (see Fig. S3). At Subsystem hierarchy

level 2 (subgroup level of subsystems such as ala-

nine, serine, and glycine), the two human microbio-

mes start to show some minor differences. At

subsystem level (for example, alanine biosynthesis),

more significant differences are observed (see Fig.

S4). There are 43 subsystems that appear to be

unique in dental plaque, which are encoded by 370

reads (see Table S6). Similarly, COG category and

pathway, Pfam and TIGRfam were compared using

the IMG-M Abundance Profiles Tool. Despite a few

differences in COG and Pfam functional categories

between dental plaque and human gut samples (see

Fig. S3), the two microbiomes are very similar to

each other in the TIGRfam category (see Table S7).

At the lower level, about 10% COG (263) and Pfam

(166) showed significantly different abundance pro-

files between the human oral and gut samples. This

finding provides further support for the notion that

functional redundancy exists in high levels of metabo-

lism-based subsystems, but at the lower level, differ-

ent organisms may harbor genes for its niche-specific

function. Hence, only by analysing both species rich-

ness and gene expression can we identify the micro-

bial attributes for oral health or disease.

CONCLUSION

During this pilot short-gun metagenomic sequencing

and data analysis of the human dental plaque mi-

crobiome, we have learned the following. Pooled pla-

que samples from each individual are required to

obtain sufficient DNA for sequencing, especially from

patients with periodontal health. Special care should

be taken to avoid human cell contamination during

sampling. A hybrid assembly of 454 pyrosequencing

and Illumina reads may be a more cost-effective way

to sequence and assemble the metagenome of

human microbiomes. Using the 31 phylogenetic mar-

ker genes for community profiling may yield more

accurate estimates than 16S rRNA-based assays

because of the presence of a single copy for each

marker per microbial genome. Each individual may

harbor a unique microbiome, and only by analysing a

large number of microbiomes can we obtain a gen-

eral picture of the microbiomes of health and dis-

ease. The flexibility in nutrient and oxygen

requirements may be important in allowing the oral

microbes to reside in the oral cavity. It is our hope

that this information will prove useful for other investi-

gators in the oral microbiome research community. It

should also be noted that the primary purpose of this

pilot study was to resolve a number of technical issues

in metagenomic sequencing and data analysis, such

as how much plaque sample is needed to obtain a

sufficient amount of DNA for sequencing, how to avoid

host cell contamination in samples, what is the most

cost-effective way to achieve sequence coverage and

depth, what is the best way to assemble the sequence

reads, and what software or database should be used

for community profiling or functional assignment etc.

The results obtained are interesting but are secondary

to the technical issues resolved during this pilot study.

We expect that in the future, upon availability of fund-

ing, more biology-oriented studies will be conducted,

which will provide a true estimate of the functional

repertoire of the human oral microbiome.
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