

Nuclear factor-KB and p38 mitogen-activated protein kinase signaling pathways are critically involved in *Porphyromonas gingivalis* lipopolysaccharide induction of lipopolysaccharide-binding protein expression in human oral keratinocytes

P.-H. Ding¹, C.-Y. Wang², R.P. Darveau³ and L.J. Jin¹

1 Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China

2 Department of Oral Biology and Medicine, University of California Los Angeles School of Dentistry, Los Angeles, CA, USA

3 Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, USA

Correspondence: Lijian Jin, Faculty of Dentistry, Periodontology, The University of Hong Kong, Prince Phillip Dental Hospital, 34 Hospital Road, Hong Kong SAR, China. Tel.: +852 2859 0302; fax: +852 2858 7874; E-mail: lijin@hkucc.hku.hk

Keywords: human oral keratinocytes; lipopolysaccharide-binding protein; mitogen-activated protein kinase; nuclear factor-κB; *Porphyro-monas gingivalis*

Accepted 25 September 2012 DOI: 10.1111/omi.12010

SUMMARY

Lipopolysaccharide (LPS) -binding protein (LBP) plays a crucial role in innate host response to bacterial challenge. Porphyromonas gingivalis is a keystone pathogen in periodontal disease and the shift of P. gingivalis LPS lipid A structure from penta-acylated (LPS₁₆₉₀) to tetra-acylated (LPS_{1435/1449}) isoform may significantly contribute to periodontal pathogenesis. We recently demonstrated that LBP is expressed in human gingiva and contributes to periodontal homeostasis. Furthermore, different isoforms of P. gingivalis LPS differently modulate the immuno-inflammatory response, and P. gingivalis LPS₁₆₉₀ induces LBP expression in human oral keratinocytes (HOKs). This study further examined the signaling mechanisms of P. gingivalis LPS₁₆₉₀-induced and Escherichia coli LPS-induced LBP expression in HOKs. Both P. gingivalis LPS₁₆₉₀ and E. coli LPS were potent inducers of LBP expression in HOKs. The former activated phosphorylation of IkBa, p65, p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), whereas the latter phosphorylated IkBa, p38 MAPK and SAPK/JNK. A nuclear translocation of NF-KB transcription factor was confirmed upon stimulation by both forms of LPS. Further blocking assay showed that P. gingivalis LPS₁₆₉₀ induction of LBP was through NF-κB and p38 MPAK pathways, whereas E. coli LPS-induced LBP expression was mediated by NF- κ B, p38 MPAK and JNK pathways. This study demonstrates that NF-kB and p38 MAPK signaling pathways are involved in P. gingivalis LPS₁₆₉₀ induction of LBP expression in HOKs. The current findings could enhance the understanding of the molecular mechanisms of innate defense in maintenance of periodontal homeostasis.

INTRODUCTION

Lipopolysaccharide (LPS) -binding protein (LBP) has been historically dedicated to Gram-negative bacteriainduced infection (Tobias et al., 1986). It is a 50-kDa polypeptide that is mainly synthesized in hepatocytes and then released as a 58- to 60-kDa glycoprotein into the bloodstream after glycosylation (Schumann et al., 1990). The classical role of LBP is binding LPS to cell surface receptor and augmenting the innate host response to bacterial challenge. LBP at a high concentration exhibits an inhibitory effect on innate host response (Schumann, 2011). Notably, in addition to hepatocytes, LBP can also be expressed in other cells like respiratory type Π epithelial cells and intestinal epithelial cells (Vreugdenhil et al., 1999; Dentener et al., 2000). Our previous study showed for the first time that LBP could be produced by gingival epithelial cells and that its expression level in periodontally healthy subjects was significantly higher than that in patients with chronic periodontitis (Ren et al., 2004, 2005a). Further study confirmed that there was a strong interplay of LBP and cytokines in periodontal heath and disease (Ren et al., 2005b, 2009). These results indicate that LBP may play an important role in enhancement of innate immunity, and contribute significantly to periodontal homeostasis.

Porphyromonas gingivalis is a key periodontal pathogen (Darveau, 2010; Curtis et al., 2011). It is a special, keystone species that could shape the whole oral microbial community and lead to periodontal pathogenesis (Hajishengallis et al., 2011). The LPS of *P. gingivalis* is one of the crucial virulence factors and is significantly involved in the pathogenesis of periodontal disease (Jain & Darveau, 2010). P. gingivalis LPS differs from Escherichia coli LPS in structure and various biological functions (Bainbridge et al., 2002; Zhang et al., 2008). In addition, P. gingivalis LPS exhibits a great structural heterogeneity containing tetra-(LPS_{1435/1449}) and penta-acylated (LPS₁₆₉₀) lipid A structures (Darveau et al., 2004; Lu et al., 2009). Our recent studies have shown that P. gingivalis LPS with different lipid A structures differentially modulates the innate host response in terms of expression of human β -defensin-2 (hBD-2) and cytokines (Lu et al., 2009; Herath et al., 2011; Jin, 2011). Furthermore, LBP can be induced by P. gingivalis LPS₁₆₉₀ in human oral keratinocytes, whereas P. gingivalis LPS_{1435/1449} does not affect the expression (Ding *et al.*, 2012). This may account for additional evidence that LBP plays an important role in periodontal health.

The immune response to microbial insult depends on both innate and adaptive immunity. Innate immunity is crucially determined by a group of pattern recognition receptors, like the Toll-like receptor (TLR) family. This family shares downstream signaling molecules. For instance, activation of TLR4 recruits the adapter molecule myeloid differentiation primary-response protein kinases 88 (MyD88) and subsequently triggers the downstream pathways like nuclear factor-kB (NF-kB) and mitogen-activated protein kinase (MAPK) cascades (Medzhitov & Janeway, 2000; Hennessy et al., 2010). The NF-κB family of transcription factors includes five members – RelA (p65), RelB, c-Rel, p50 and p52 - which act as homodimers and heterodimers. The NF-κB transcription factors are sequestered in the cytoplasm by a family of inhibitors of κB , the socalled I κ Bs. The activation process initiated by the I κ B kinase (IKK) complex leads to phosphorylation and degradation of IkB protein, and subsequently activates NF-KB (Qin et al., 2005). MAPK is a family of Ser/Thr protein kinases widely conserved among eukaryotes and it is involved in many cellular programs. To date, the most extensively studied groups of mammalian MAPK are extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 kinases. In general, JNK and p38 kinases are more responsive to inflammatory cytokine stimulation (Roux & Blenis, 2004). However, despite this common generality, the signaling pathways initiated may be variable in different cell types in response to LPS. It has been reported that P. gingivalis LPS may activate cells through a different pathway from E. coli LPS (Bainbridge & Darveau, 2001; Darveau et al., 2004).

Human oral keratinocytes (HOKs) are the main component of oral and gingival epithelia, which not only function as a physical barrier, but essentially act as a biological barrier. Much evidence shows that oral/gingival keratinocytes actively participate in the immune response that is related to periodontal pathogenesis (Yamamoto *et al.*, 1994; Sfakianakis *et al.*, 2002). Our recent study demonstrates that *P. gingivalis* LPS₁₆₉₀induced LBP expression could be through both TLR2 and TLR4, which is different from *E. coli* LPS-induced LBP expression through TLR4 alone (Ding *et al.*, 2012). However, the signaling mechanisms involved in *P. gingivalis* LPS₁₆₉₀-induced LBP expression remain

unclear. The present study aimed to examine the specific downstream signaling pathways involved in *P. gingivalis* LPS₁₆₉₀-induced LBP expression in HOKs, and evaluate the potential difference in the signaling mechanisms of LBP expression following *P. gingivalis* LPS₁₆₉₀ and *E. coli* LPS stimulation.

METHODS

Cell culture

The primary HOKs were obtained from ScienCell Research Laboratories (Carlsbad, CA) and used in our recent study (Ding *et al.*, 2012). In brief, HOKs were incubated in a serum-free oral keratinocyte medium containing basal medium, 1% oral keratinocyte growth factor supplement and 1% penicillin and streptomycin solution, at 37°C with 5% CO₂. The medium was changed every other day until the culture reached approximately 50% confluence, and it was then changed daily. Cells at third or fourth passage were subsequently used for the experiments.

Porphyromonas gingivalis LPS preparation

The *P. gingivalis* (ATCC 33277) LPS was prepared by an established cold MgCl₂-ethanol method, through digestion of whole-cell extracts with proteinase k, and successive solubilization and precipitation (Darveau & Hancock, 1983; Darveau *et al.*, 2004; Ding *et al.*, 2012). It was then purified to keep final protein contamination < 0.1%. The fraction of fatty acids was analysed by gas chromatography–mass spectroscopy. The *P. gingivalis* LPS with penta-acylated (LPS₁₆₉₀) lipid A structure was prepared and analysed using matrix-assisted laser desorption ionization time-offlight mass spectrometry (Guo *et al.*, 1997). *E. coli* LPS (0111:B4) was obtained from Sigma (St Louis, MO) and employed as a reference control.

LPS stimulation and blocking assay

In the study of LPS-activated signaling pathways, HOKs were treated with 100 ng ml⁻¹ of *P. gingivalis* LPS₁₆₉₀ and *E. coli* LPS from 5 min to 4 h. For the blocking assay, cells were pretreated for 30 min with 10 μ M IKK- β inhibitor (IKK 2 inhibitor IV, Merck, Darmstadt, Germany), p38 MAPK inhibitor SB202190 (Sigma) or stress-activated protein kinase (SAPK)/JNK inhibitor

SP600125 (Sigma), which were dissolved in dimethyl sulfoxide (DMSO), and then stimulated with 100 ng ml⁻¹ *P. gingivalis* LPS₁₆₉₀ or *E. coli* LPS for 15 min and 24 h, respectively. HOKs treated with culture medium or DMSO alone served as negative controls.

Extraction of total cellular and nuclear proteins

Total cell proteins including cytoplasmic and nuclear proteins were extracted by M-PER mammalian protein extraction reagent (Thermo Scientific, Rockford, IL). Nuclear protein was prepared with NE-PER Nuclear and Cytoplasmic Extraction Reagent (Thermo Scientific). The concentration of protein was measured by the bicinchoninic acid protein assay (Thermo Scientific).

Western blot

Total cellular extracts were separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred onto polyvinylidene fluoride membrane. Afterwards, it was blocked with Pierce Protein-free blocking buffer for 1 h at room temperature. After incubation firstly with specific primary antibodies (1: 2000) at 4°C overnight, secondary antibodies (1:20,000) was then added and incubated for 1 h at room temperature with gentle agitation. The membrane was then incubated with SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) for 5 min. The signals were detected on X-ray films. Except for LBP primary antibody (Santa Cruz Biotechnology, Santa Cruz, CA), all the other primary antibodies including p-IkBa (ser32), IkBa, p-p65 (ser536), p65, p-p38 MAPK (Thr180/Thr182), p-SAPK/JNK (Thr183/Thr185) and a-tubulin were obtained from Cell Signaling Technology (Danvers, MA). The secondary antibodies were obtained from Invitrogen (Carlsbad, CA). To guantify the bands obtained via Western blot analysis, ImageJ software-based analysis (http://rsb.info.nih.gov/ij/) was employed to quantify the integrated density.

Assay of transcription factor p65

An NF- κ B p65 Transcription Factor Assay kit (Thermo Scientific) was used to evaluate the levels of activated p65 transcription factor in nuclear protein. Each well of the kit was coated with biotinylated-consensus DNA sequence, which binds only the active form of p65. Briefly, 2 μ g nuclear proteins was added to each well according to the manufacturer's instruction. The signals were then detected by a ChemidocTM XRS (Bio-Rad, Benicia, CA).

Statistical analysis

All the experiments were repeated in three independent assays. The results were presented as mean \pm SD. If both the normality test and the test of homogeneity of variances were justified, the statistical significance was determined using one-way analysis of variance (Dunnett test or Bonferroni and least significant difference methods). Otherwise, a non-parametric test was used. A *P*-value < 0.05 was considered statistically significant. The analysis was undertaken by IBM SPSS Statistic 19 (SPSS Inc, IBM Corp., Armonk, NY).

RESULTS

Porphyromonas gingivalis LPS₁₆₉₀-induced activation of NF-κB signaling pathways

To investigate the activation of NF- κ B signaling pathways, HOKs were treated in the absence or presence of *P. gingivalis* LPS₁₆₉₀ and *E. coli* LPS for up to 4 h, and then protein lysates were analysed for total I κ B α and the phosphorylation of I κ B α (Fig. 1) and NF- κ B

Figure 1 Human oral keratinocytes (HOKs) were treated in the absence or presence of *Porphyromonas gingivalis* penta-acylated lipopolysaccharide (LPS₁₆₉₀) and *Escherichia coli* lipopolysaccharide (LPS) for up to 4 hours, then protein lysates were analysed for the total I_kB_{α} and the phosphorylation status of I_kB_{α}. Expression level of tubulin was used as a loading control. I_kB_{α} was phosphorylated after 15 min of *P. gingivalis* LPS₁₆₉₀ treatment, peaked at 30 min, and then decreased at 1 h. However, the signal was upregulated again at 4 h (A, B). In contrast, *E. coli* LPS-induced phosphorylation of I_kB_{α} was strongly increased at 15 min, and then decreased gradually at 30 min and 1 h. The signal was also upregulated at 4 hours (D, E). The expression of I_kB_{α} protein was decreased when the phosphorylated I_kB_{α} was increased upon both *P. gingivalis* LPS₁₆₉₀ (A, C) and *E. coli* LPS (D, F) treatments, although there was no significant difference. One representative experiment of three is shown. **P* < 0.05, ***P* < 0.001 versus control group.

p65 (Fig. 2). Expression levels of tubulin (Fig. 1) and total NF-κB p65 (Fig. 2) were used as loading controls respectively. IkBa was phosphorylated after 15 min of P. gingivalis LPS₁₆₉₀ treatment, peaked at 30 min, and had decreased at 1 h. However, the signal was upregulated again at 4 h (Fig. 1A,B). In contrast, E. coli LPS-induced phosphorylation of IkBa significantly increased at 15 min, and then decreased gradually at 30 min and 1 h. The signal was also upregulated again at 4 h (Fig. 1D,E). The phosphorylation of IkBa protein usually involves the eventual degradation of $I\kappa B\alpha$ by the proteasome. The expression level of $I\kappa B\alpha$ protein was therefore investigated. It was found that the level of $I\kappa B\alpha$ protein decreased with phosphorylation of IkBa upon both P. gingivalis LPS₁₆₉₀ (Fig. 1A,C) and E. coli LPS (Fig. 1D,F) stimulation, although there was no significant downregulation. Phosphorylation of NF-kB p65 was stimulated and reached the peak at 15 min after P. gingivalis LPS₁₆₉₀ stimulation, then gradually decreased at 30 min, 1 and 4 h (Fig. 2A,B). However, there was no significant phosphorylation of NF-KB p65 upon E. coli LPS stimulation during 4 h (Fig. 2C,D). These results indicate that *P. gingivalis* LPS₁₆₉₀ may activate several components of the NF- κ B signaling pathways, which is to some extent different from *E. coli* LPS.

Porphyromonas gingivalis LPS₁₆₉₀-induced translocation of NF-κB transcription factor p65

To further confirm whether LPS also induces the nuclear translocation of NF- κ B, nuclear proteins were isolated and measured by transcription factor enzyme-linked immunosorbent assay kits for NF- κ B p65. As shown in Fig. 3, *P. gingivalis* LPS₁₆₉₀ at 100 ng ml⁻¹ induces the translocation of p65 to nucleus at 15 min, peaks at 30 min and then vanishes at 1 h (lane 2). Whereas 100 ng ml⁻¹ *E. coli* LPS induces the translocation early, at 5 min, and quickly vanishes at 15 min (lane 1).

Porphyromonas gingivalis LPS₁₆₉₀-induced activation of MAPK signaling pathways

P. gingivalis LPS₁₆₉₀ (100 ng/ml) С E. coli LPS (100 ng/ml) Α 0 5 min 30 min 4 h0 4 h 15 min 1 h 5 min 15 min 30 min 1 h p-p65 p-p65 p65 p65 В D 300,000 300,000 p-P65 (Calibrated integrated density) p-P65 (Calibrated integrated density) 250,000 250,000 200,000 200.000 150,000 150.000 100,000 100,000 50,000 50,000 0 0 5 min Control 5 min Control 15 min 30 min 1 h 4 h 15 min 30 min 1 h 4 h E.coli LPS stimulation time P. g. LPS₁₆₉₀ stimulation time

Four distinct families of MAPKs in mammalian cells have been identified. Of them, p38 MAPK and JNK

Figure 2 Protein lysates of stimulated human oral keratinocytes (HOKs) were analysed for the phosphorylation status of nuclear factor- κ B (NF- κ B) p65. Expression level of total NF- κ B p65 was used as a loading control. Phosphorylation of NF- κ B p65 was stimulated and reached the peak at 15 min after *Porphyromonas gingivalis* penta-acylated lipopolyaccharide (LPS₁₆₉₀) treatment, then gradually decreased at 30 min, 1 h and 4 h (A, B). However, there was no stimulation of phosphorylated NF- κ B p65 upon *Escherichia coli* LPS treatment for 4 h (C, D). One representative experiment of three is shown. **P* < 0.05, ***P* < 0.001 versus control group.

Figure 3 Nuclear factor- κ B (NF- κ B) p65 DNA-binding is increased upon *Porphyromonas gingivalis* penta-acylated lipopolyaccharide (LPS₁₆₉₀) and *Escherichia coli* LPS stimulation. Human oral keratinocytes (HOKs) were stimulated with LPS (100 ng ml⁻¹) for 5 min to 4 h. Nuclear proteins were extracted for the NF- κ B p65 transcription factor assay. Lane 2, *P. gingivalis* LPS₁₆₉₀ at 100 ng ml⁻¹ induces the translocation of p65 to the nucleus at 15 min, but disappears at 1 h. Lane 1, 100 ng ml⁻¹ *E. coli* LPS induces the translocation early at 5 min, and disappears at 15 min. One representative experiment of three is shown.

are related to inflammation (Chen & Thorner, 2007). Protein lysates of simulated HOKs were therefore analysed for the phosphorylation of p38 MAPK and SAPK/JNK (Fig. 4). Tubulin was used as a loading control. Phosphorylated p38 MAPK was quickly and strongly increased at 5 min after P. gingivalis LPS₁₆₉₀ stimulation, and the intensity of the band gradually decreased over time, although phosphorylation was still detectable from 15 min to 4 h (Fig. 4A,B). Phosphorylated SAPK/JNK protein was also strongly increased at 5 min, after P. gingivalis LPS₁₆₉₀ stimulation, and then declined over time (Fig. 4A,C). The E. coli LPS-induced phosphorylation of p38 MAPK and SAPK/JNK was similar to the above pattern (Fig. 4D-F). These results indicate that both P. gingivalis LPS₁₆₉₀ and E. coli LPS activate p38 MAPK and JNK signaling pathways.

Involvement of NF-κB pathway in *P. gingivalis* LPS₁₆₉₀ induction of LBP

To further elucidate the potential involvement of the NF- κ B pathway in LPS-induced LBP expression, the HOKs were pretreated with IKK- β inhibitor for 30 min, and then incubated with medium or *P. gingivalis* LPS₁₆₉₀ and *E. coli* LPS at 100 ng ml⁻¹. Then protein lysates were analysed for the phosphorylation of I κ B α and LBP expression. Expression level of tubulin

was used as a loading control (Fig. 5). The blocking efficiency was confirmed by evaluating the phosphorylation of IκBα, which was shown to be significantly blocked by 10 μM IKK-β inhibitor (Fig. 5A,B). Subsequent observation showed that both *P. gingivalis* LPS₁₆₉₀ and *E. coli* LPS-induced LBP expressions were significantly down-regulated (Fig. 5A,C). When DMSO was used as a control separately it showed no effect on the testing results (data are not shown). The above results indicate that both *P. gingivalis* LPS₁₆₉₀ and *E. coli* LPS induction of LBP involves the NF-κB pathway.

Involvement of p38 MAPK pathway in *P. gingivalis* LPS₁₆₉₀ induction of LBP

To further elucidate the potential involvement of p38 MAPK and JNK pathways in LPS-induced LBP expression, the HOKs were pretreated with 10 μ M p38 MAPK inhibitor SB202190 and JNK inhibitor SP600125, respectively, for 30 min. Then protein lysates were analysed for LBP expression and the phosphorylation of p38 MAPK and SAPK/JNK. The phosphorylation of p38 MAPK (Fig. 6A,B) and SAPK/ JNK (Fig. 7A,B) was significantly blocked by SB202190 and SP600125, respectively. In addition, both P. gingivalis LPS₁₆₉₀-induced and E. coli LPSinduced LBP expression was significantly downregulated by p38 MAPK inhibitor (Fig. 6A,C). However, JNK inhibitor could not significantly downregulate P. gingivalis LPS₁₆₉₀-induced LBP expression. In contrast, E. coli LPS-induced LBP expression could be inhibited by JNK inhibitor (Fig. 7A,C). The DMSO was used as a control separately, and it exhibited no effect on the testing results (data are not shown). These data indicate that P. gingivalis LPS₁₆₉₀ induction of LBP involves the p38 MAPK pathway, but not the JNK pathway. This is different from E. coli LPS induction of LBP, which involves both p38 MAPK and JNK pathways.

DISCUSSION

The present study suggests that *P. gingivalis* LPS₁₆₉₀ and *E. coli* LPS are potent inducers of LBP expression in HOKs. The *P. gingivalis* LPS₁₆₉₀ induction of LBP involves activation of both NF- κ B and p38 MAPK signaling pathways, which to some extent are different from *E. coli* LPS induction of LBP via NF- κ B, p38

P. gingivalis LPS induction of LBP

Figure 4 Protein lysates of stimulated human oral keratinocytes (HOKs) were analysed for the phosphorylation status of p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). Expression level of tubulin was used as a loading control. Phosphorylated p38 MAPK protein was quickly and strongly increased at 5 min after *Porphyromonas gingivalis* penta-acylated lipopolyaccharide (LPS₁₆₉₀) stimulation, and the intensity of the band gradually decreased over time, although phosphorylation was still detectable at 15 min to 4 h (A, B). Phosphorylated SAPK/JNK protein was also strongly increased at 5 min, after *P. gingivalis* LPS₁₆₉₀ stimulation, and then declined over time (A, C). The *Escherichia coli* LPS-induced phosphorylation of p38 MAPK and SAPK/JNK was similar to the above pattern (D–F). One representative experiment of three is shown. ***P* < 0.001 versus control group.

MAPK and JNK pathways. LBP has been implicated in participating in a number of inflammatory diseases like sepsis (Mierzchala *et al.*, 2011). Although it has been extensively studied in various bacteria-induced inflammatory diseases in humans, the study of its roles in the local immune system is limited. Periodontal pathogenesis is characterized by bacterial LPS activation of series proinflammatory cytokines and mediators from various host cells that may mediate uncontrolled immuno-inflammatory responses and lead to tissue destruction and tooth loss. As far as we know, we are the first group to report the local expression of LBP in human gingiva (Ren *et al.*, 2004). Subsequently, further study shows a strong interplay of LBP with cytokines in diseased periodontal pocket tissues and healthy gingival tissues (Ren *et al.*, 2005b, 2009). Moreover, our recent study indicates that LBP is differentially regulated by different isoforms of *P. gingivalis* LPS, and its expression can be upregulated significantly by *P. gingivalis* LPS₁₆₉₀, but not by *P. gingivalis* LPS_{1435/1449} (Ding *et al.*, 2012). A recent study supports the theory that *P. gingivalis* LPS may use its lipid A structural content to modulate the innate host response in various microenvironmental conditions like different levels of hemin (Al-Qutub *et al.*, 2006). The *in vitro* study

P. gingivalis LPS induction of LBP

P-H. Ding et al.

Figure 5 Human oral keratinocytes (HOKs) were pretreated for 30 min with IkB kinase (IKK- β) inhibitor that targets nuclear factor-kB (NF-kB), and then was incubated with medium or *Porphyromonas gingivalis* penta-acylated lipopolyaccharide (LPS₁₆₉₀) and *Escherichia coli* LPS at 100 ng ml⁻¹. Then protein lysates were analysed for LPS-binding protein (LBP) expression and the phosphorylation status of IkB α . Expression level of tubulin was used as a loading control. After 24 h, it was found that the phosphorylation status of IkB α was significantly blocked by 10 μ M IKK- β inhibitor (A, B). Subsequently, both *P. gingivalis* LPS₁₆₉₀ and *E. coli* LPS-induced LBP expression was significantly downregulated (A, C). Dimethyl sulfoxide was used as a control separately and it showed no effect on the testing results (data are not shown). One representative experiment of three is shown. ***P* < 0.001.

shows that at a low hemin concentration, *P. gingivalis* produces predominantly the form of LPS with a penta-acylated lipid A structure; whereas it expresses mainly the isoform with tetra-acylated lipid A structures at an increased concentration of hemin (Al-Qutub *et al.*, 2006). From a clinical point of view, the hemin levels at tooth site may increase with the severity of periodontal inflammation. It is therefore conceivable that the interaction of host with *P. gingivalis* varies with different periodontal conditions, through regulation of series innate defense molecules that have been reported by our group including E-selectin, cytokines, hBDs and LBP (Reife *et al.*, 2006; Lu *et al.*, 2009; Herath *et al.*, 2011; Jin, 2011; Ding *et al.*, 2012). The gingival epithelial cells are the first

set of host cells to come in contact with microbes and they are in a unique position to function as an early signaling system linking to the underlying cells. Given the importance of LBP in innate host defense and its potential involvement in periodontal disease, we have been particularly interested in the signaling mechanisms of LBP expression induced by *P. gingivalis* LPS₁₆₉₀ in human oral epithelia cells.

Nuclear factor- κ B is a key transcription factor central to a number of immuno-inflammatory responses (Cario *et al.*, 2000). Although there are no *in vitro* studies on the involvement of NF- κ B in LBP expression in human oral epithelia, similar observations have been made in other research areas. It has been found that the pathogenic, but not commensal, bacteria use

Figure 6 Human oral keratinocytes (HOKs) were pretreated for 30 min with p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190. Then protein lysates were analysed for lipopolysaccharide (LPS) -binding protein (LBP) expression and the phosphorylation status of p38 MAPK. Expression level of tubulin was used as a loading control. It was found that the phosphorylation status of p38 MAPK (A, B) was significantly blocked by SB202190. Moreover, after the stimulation of *Porphyromonas gingivalis* penta-acylated LPS (LPS₁₆₉₀) and *Escherichia coli* LPS at 100 ng ml⁻¹ for 24 h, the above two LPS-induced LBP expressions were significantly downregulated by p38 MAPK inhibitor (A, C). Dimethyl sulfoxide was used as a control separately and it showed no effect on the testing results (data are not shown). One representative experiment of three is shown. **P* < 0.001.

NF-kB signaling for induction of hBD-2 in oral epithelial cells (Krisanaprakornkit et al., 2002; Chung & Dale, 2008). Our present study found that P. gingivalis LPS₁₆₉₀ activated the phosphorylation of both $I\kappa B\alpha$ and p65 transcription factors, which was to some extent different from E. coli LPS. It is important to note that P. gingivalis LPS₁₆₉₀ induction of IkBa phosphorylation was slightly delayed with reference to E. coli LPS, and the nuclear translocation of transcription factor p65 by P. gingivalis LPS₁₆₉₀ stimulation was also delayed compared with E. coli LPS stimulation. This observed delay in NF-kB activation may be due to differential utilization of MyD88-dependent and MyD88independent mechanisms by P. gingivalis LPS₁₆₉₀ and E. coli LPS. As previous studies have shown that TLR4 signaling of NF-KB activation consists of at least MyD88-dependent and Toll/interleukin-1 receptor domain-containing adapter inducing interferon- β

(TRIF)/TRIF-related adaptor molecule (TRAM)-dependent pathways (Kawai et al., 2001; Takeda & Akira, 2004). However, the latter activates NF-kB signaling pathway in a time-delayed fashion through internalization of TLR4 compared with the former (Kawai et al., 1999; Wang et al., 2012). It could therefore be speculated that the TRIF/TRAM-dependent pathway may be highly involved in P. gingivalis LPS₁₆₉₀ induction of LBP expression with reference to E. coli LPS. Further study is required to confirm this. Next, blocking assay by IKK- β inhibitor confirmed the involvement of NF- κ B in regulation of LBP expression. The NF-κB pathway is closely involved in the expression of proinflammatory cytokines and other innate defense mediators like LBP and hBD-2 (Krisanaprakornkit et al., 2002; Hayden & Ghosh, 2012). Taken together, it seems that host may orchestrate a complex regulation mechanism through sharing signaling pathways in response

P. gingivalis LPS induction of LBP

P-H. Ding et al.

Figure 7 Human oral keratinocytes (HOKs) were pretreated for 30 min with c-Jun N-terminal kinase (JNK) inhibitor SP600125. Then protein lysates were analysed for lipopolysaccharide (LPS) -binding protein (LBP) expression and the phosphorylation status of stress-activated protein kinase (SAPK)/JNK. Expression level of tubulin was used as a loading control. It was found that the phosphorylation status of SAPK/JNK (A, B) was significantly blocked by SP600125. However, there was no significant change of *Porphyromonas gingivalis* penta-acylated LPS (LPS₁₆₉₀) -induced LBP expression by JNK inhibitor. In contrast, the *Escherichia coli* LPS-induced LBP expression was inhibited by JNK inhibitor (A, C). Dimethyl sulfoxide was used as a control separately and it showed no effect on the testing results (data are not shown). One representative experiment of three is shown. *P < 0.05.

to microbial challenge, thereby contributing to the maintenance of tissue homeostasis.

The MAPK pathway is another important pathway central to LPS-induced inflammatory response. Our results showed that P. gingivalis LPS₁₆₉₀ could activate both p38 and JNK pathways. A blocking assay using specific inhibitors of p38 MAPK (SB202190) and SAPK/JNK (SP600125) (Karahashi et al., 2000; Marchant et al., 2010) confirmed that p38 MAPK is involved in P. gingivalis LPS₁₆₉₀-induced LBP expression. Previous studies suggest that LPS derived from various bacterial species differentially activate host cells through different signaling pathways (Darveau et al., 2002; Zhang et al., 2008). For instance, P. gingivalis LPS activated the JNK pathway to secret cytokines in THP-1 cells, whereas E. coli LPS used the NF-KB, p38 MAPK and JNK pathways (Zhang et al., 2008). It is currently unknown whether and to what extent the underlying intracellular signaling for LBP expression in human gingival/oral epithelia would be affected by different forms of LPS. The present study found that both P. gingivalis LPS₁₆₉₀ and E. coli LPS could activate HOKs to express LBP, through shared NF-κB and p38 MAPK signaling pathways but the JNK pathway was only involved in E. coli LPS-induction of LBP. Interestingly, our recent study showed that TLR4 was involved in induction of LBP expression in HOKs by both P. gingivalis LPS₁₆₉₀ and E. coli LPS, and additionally TLR2 could be activated by P. gingivalis LPS₁₆₉₀ as well (Ding et al., 2012). The difference in structure and biological functions between P. gingivalis LPS and E. coli LPS may contribute to the discrepancy observed. It is noted that P. gingivalis LPS lacks heptose in its structure and is less potent in classic endotoxin assays with reference to enterobacterial LPS (Ogawa et al., 2000; Wang &

Ohura, 2002). Recognition of *P. gingivalis* LPS by TLR2 may also account for the different MAPK activation profile in LBP induction with reference to *E. coli* LPS. Further study is needed to clarify this point.

Taken together with previous studies, our results here suggest that NF- κ B and p38 MAPK signaling pathways are significantly involved in *P. gingivalis* LPS₁₆₉₀-induced LBP expression in HOKs. It remains unknown how the host orchestrates to regulate the complicated innate host response for maintaining tissue homeostasis through ligand–receptor interaction and shared signaling pathways. Further study is needed to identify the specific regulatory complex in relevant signaling pathways that determine LBP expression in parallel with analysing the expression of other immuno-inflammatory molecules.

Within the limitations of the present study, the current findings demonstrate that NF- κ B and p38 MAPK signaling pathways are critically involved in *P. gingivalis* LPS₁₆₉₀ induction of LBP expression in HOKs. This study could enhance the understanding of the molecular mechanisms of innate defense in the maintenance of periodontal homeostasis.

ACKNOWLEDGEMENTS

This study was supported by the Hong Kong Research Grants Council (HKU766909M, HKU 768411M and the Modern Dental Laboratory/HKU Endowment Fund to LJJ).

CONFLICT OF INTEREST

The authors state no conflict of interest.

REFERENCES

- Al-Qutub, M.N., Braham, P.H., Karimi-Naser, L.M., Liu, X., Genco, C.A. and Darveau, R.P. (2006) Hemin-dependent modulation of the lipid A structure of *Porphyromonas gingivalis* lipopolysaccharide. *Infect Immun* **74**: 4474– 4485.
- Bainbridge, B.W. and Darveau, R.P. (2001) *Porphyromonas gingivalis* lipopolysaccharide: an unusual pattern recognition receptor ligand for the innate host defense system. *Acta Odontol Scand* **59**: 131–138.
- Bainbridge, B.W., Coats, S.R. and Darveau, R.P. (2002) *Porphyromonas gingivalis* lipopolysaccharide displays

functionally diverse interactions with the innate host defense system. *Ann Periodontol* **7**: 29–37.

- Cario, E., Rosenberg, I.M., Brandwein, S.L., Beck, P.L., Reinecker, H.C. and Podolsky, D.K. (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing toll-like receptors. *J Immunol* **164**: 966–972.
- Chen, R.E. and Thorner, J. (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast *Saccharomyces cerevisiae*. *Biochim Biophys Acta* **1773**: 1311–1340.
- Chung, W.O. and Dale, B.A. (2008) Differential utilization of nuclear factor-κB signaling pathways for gingival epithelial cell responses to oral commensal and pathogenic bacteria. *Oral Microbiol Immunol* **23**: 119–126.
- Curtis, M.A., Zenobia, C. and Darveau, R.P. (2011) The relationship of the oral microbiotia to periodontal health and disease. *Cell Host Microbe* **10**: 302–306.
- Darveau, R.P. (2010) Periodontitis: a polymicrobial disruption of host homeostasis. *Nat Rev Microbiol* **8**: 481–490.
- Darveau, R.P. and Hancock, R.E. (1983) Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough *Pseudomonas aeruginosa* and *Salmonella typhimurium* strains. *J Bacteriol* **155**: 831–838.
- Darveau, R.P., Arbabi, S., Garcia, I., Bainbridge, B. and Maier, R.V. (2002) *Porphyromonas gingivalis* lipopolysaccharide is both agonist and antagonist for p38 mitogen-activated protein kinase activation. *Infect Immun* **70**: 1867–1873.
- Darveau, R.P., Pham, T.T., Lemley, K. *et al.* (2004) *Porphyromonas gingivalis* lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. *Infect Immun* **72**: 5041–5051.
- Dentener, M.A., Vreugdenhil, A.C., Hoet, P.H. *et al.* (2000) Production of the acute-phase protein lipopolysaccharide-binding protein by respiratory type II epithelial cells: implications for local defense to bacterial endotoxins. *Am J Respir Cell Mol Biol* **23**: 146–153.
- Ding, P.H., Wang, C.Y., Darveau, R.P. and Jin, L.J. (2012) *Porphyromonas gingivalis* LPS stimulates the expression of LPS-binding protein in human oral keratinocytes in vitro. *Innate Immun* (Epub ahead of print). doi: 10.1177/1753425912450348
- Guo, L., Lim, K.B., Gunn, J.S. *et al.* (1997) Regulation of lipid A modifications by *Salmonella typhimurium* virulence genes phoP-phoQ. *Science* **276**: 250–253.
- Hajishengallis, G., Liang, S., Payne, M.A. *et al.* (2011) Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal

microbiota and complement. *Cell Host Microbe* **10**: 497– 506.

- Hayden, M.S. and Ghosh, S. (2012) NF-κB, the first quarter-century: remarkable progress and outstanding questions. *Genes Dev* **26**: 203–234.
- Hennessy, E.J., Parker, A.E. and O'Neill, L.A. (2010) Targeting Toll-like receptors: emerging therapeutics? *Nat Rev Drug Discov* **9**: 293–307.
- Herath, T.D., Wang, Y., Seneviratne, C.J. *et al.* (2011) *Porphyromonas gingivalis* lipopolysaccharide lipid A heterogeneity differentially modulates the expression of IL-6 and IL-8 in human gingival fibroblasts. *J Clin Periodontol* **38**: 694–701.
- Jain, S. and Darveau, R.P. (2010) Contribution of *Porphyromonas gingivalis* lipopolysaccharide to periodontitis. *Periodontol 2000* **54**: 53–70.
- Jin, L.J. (2011) An update on innate defense *molecules* of human gingiva. *Periodontol 2000* **56**: 125–142.
- Karahashi, H., Nagata, K., Ishii, K. and Amano, F. (2000) A selective inhibitor of p38 MAP kinase, SB202190, induced apoptotic cell death of a lipopolysaccharidetreated macrophage-like cell line, J774.1. *Biochim Biophys Acta* **1502**: 207–223.
- Kawai, T., Adachi, O., Ogawa, T., Takeda, K. and Akira, S. (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. *Immunity* **11**: 115–122.
- Kawai, T., Takeuchi, O., Fujita, T. *et al.* (2001) Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. *J Immunol* **167**: 5887–5894.
- Krisanaprakornkit, S., Kimball, J.R. and Dale, B.A. (2002) Regulation of human β -defensin-2 in gingival epithelial cells: the involvement of mitogen-activated protein kinase pathways, but not the NF- κ B transcription factor family. *J Immunol* **168**: 316–324.
- Lu, Q., Darveau, R.P., Samaranayake, L.P., Wang, C.Y. and Jin, L.J. (2009) Differential modulation of human β-defensins expression in human gingival epithelia by *Porphyromonas gingivalis* lipopolysaccharide with tetraand penta-acylated lipid A structures. *Innate Immun* **15**: 325–335.
- Marchant, D., Singhera, G.K., Utokaparch, S. *et al.* (2010) Toll-like receptor 4-mediated activation of p38 mitogenactivated protein kinase is a determinant of respiratory virus entry and tropism. *J Virol* 84: 11359–11373.
- Medzhitov, R. and Janeway, C. Jr (2000) Innate immunity. *N Engl J Med* **343**: 338–344.
- Mierzchala, M., Krzystek-Korpacka, M., Gamian, A. and Durek, G. (2011) Quantitative indices of dynamics in

concentrations of lipopolysaccharide-binding protein (LBP) as prognostic factors in severe sepsis/septic shock patients--comparison with CRP and procalcitonin. *Clin Biochem* **44**: 357–363.

- Ogawa, T., Asai, Y., Yamamoto, H. *et al.* (2000) Immunobiological activities of a chemically synthesized lipid A of *Porphyromonas gingivalis. FEMS Immunol Med Microbiol* **28**: 273–281.
- Qin, H.W., Wilson, C.A., Lee, S.J., Zhao, X.Y. and Benveniste, E.N. (2005) LPS induces CD40 gene expression through the activation of NF- κ B and STAT-1 α in macrophages and microglia. *Blood* **106**: 3114– 3122.
- Reife, R.A., Coats, S.R., Al-Qutub, M. *et al.* (2006) *Porphyromonas gingivalis* lipopolysaccharide lipid A heterogeneity: differential activities of tetra- and penta-acylated lipid A structures on E-selectin expression and TLR4 recognition. *Cell Microbiol* 8: 857–868.
- Ren, L., Jin, L.J. and Leung, W.K. (2004) Local expression of lipopolysaccharide-binding protein in human gingival tissues. *J Periodontal Res* **39**: 242–248.
- Ren, L., Leung, W.K., Darveau, R.P. and Jin, L.J. (2005a) The expression profile of lipopolysaccharide-binding protein, membrane-bound CD14, and toll-like receptors 2 and 4 in chronic periodontitis. *J Periodontol* **76**: 1950– 1959.
- Ren, L., Leung, W.K., Loo, T.W. and Jin, L.J. (2005b) Lipopolysaccharide-binding protein down-regulates the expression of interleukin-6 by human gingival fibroblast. *J Periodontal Res* **40**: 407–416.
- Ren, L., Jiang, Z.Q., Fu, Y., Leung, W.K. and Jin, L.J.
 (2009) The interplay of lipopolysaccharide-binding protein and cytokines in periodontal health and disease. *J Clin Periodontol* 36: 619–626.
- Roux, P.P. and Blenis, J. (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. *Microbiol Mol Biol R* 68: 320–344.
- Schumann, R.R. (2011) Old and new findings on lipopolysaccharide-binding protein: a soluble pattern-recognition molecule. *Biochem Soc Trans* **39**: 989–993.
- Schumann, R.R., Leong, S.R., Flaggs, G.W. *et al.* (1990) Structure and function of lipopolysaccharide binding protein. *Science* **249**: 1429–1431.
- Sfakianakis, A., Barr, C.E. and Kreutzer, D.L. (2002) Localization of the chemokine interleukin-8 and interleukin-8 receptors in human gingiva and cultured gingival keratinocytes. *J Periodontal Res* **37**: 154– 160.

- Takeda, K. and Akira, S. (2004) TLR signaling pathways. *Semin Immunol* **16**: 3–9.
- Tobias, P.S., Soldau, K. and Ulevitch, R.J. (1986) Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. *J Exp Med* **164**: 777–793.
- Vreugdenhil, A.C., Dentener, M.A., Snoek, A.M., Greve, J. W. and Buurman, W.A. (1999) Lipopolysaccharide binding protein and serum amyloid A secretion by human intestinal epithelial cells during the acute phase response. *J Immunol* **163**: 2792–2798.
- Wang, P.L. and Ohura, K. (2002) *Porphyromonas gingivalis* lipopolysaccharide signaling in gingival fibroblasts-CD14 and Toll-like receptors. *Crit Rev Oral Biol Med* **13**: 132–142.
- Wang, Y., Yang, Y., Liu, X. *et al.* (2012) Inhibition of clathrin/dynamin-dependent internalization interferes with LPS-mediated TRAM-TRIF-dependent signaling pathway. *Cell Immunol* **274**: 121–129.
- Yamamoto, T., Osaki, T., Yoneda, K. and Ueta, E. (1994) Cytokine production by keratinocytes and mononuclear infiltrates in oral lichen planus. *J Oral Pathol Med* 23: 309–315.
- Zhang, D., Chen, L., Li, S., Gu, Z. and Yan, J. (2008) Lipopolysaccharide (LPS) of *Porphyromonas gingivalis* induces IL-1 β , TNF- α and IL-6 production by THP-1 cells in a way different from that of *Escherichia coli* LPS. *Innate Immun* **14**: 99–107.

Copyright of Molecular Oral Microbiology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.