Involvement of lipoprotein PpiA of *Streptococcus gordonii* in evasion of phagocytosis by macrophages

K. Cho^{1,2}, T. Arimoto¹, T. Igarashi^{1*} and M. Yamamoto²

1 Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Tokyo, Japan

2 Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan

Correspondence: Takafumi Arimoto, Department of Oral Microbiology and Immunology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan Tel.: + 81 3 3784 8166; fax: + 81 3 3784 4105; E-mail: takafumi@dent.showa-u.ac.jp *This work is dedicated in fondest memory to Professor Takeshi Igarashi, whose influence as a mentor will be greatly missed, and without whom this work would not have been possible.

Keywords: lipoprotein; macrophage receptor with collagenous structure; phagocytosis; macrophage; scavenger receptor A; Streptococcus gordonii

Accepted 21 April 2013 DOI: 10.1111/omi.12031

SUMMARY

Streptococcus gordonii is a commensal grampositive bacterium that resides in the human oral cavity, and is one of the most common causes of infective endocarditis (IE). Bacterial surface molecules play an important role in establishing IE, and several S. gordonii proteins have been implicated in binding to host cells during the establishment of IE. In this study, we identified a putative lipoprotein, peptidyl-prolyl cis/trans isomerase (PpiA), and clarified its role in evasion of phagocytosis by macrophages. Attenuation of the gene encoding prolipoprotein diacylglyceryl transferase (Lgt) altered the localization of PpiA from the cell surface to the culture supernatant, indicating that PpiA is lipid-anchored in the cell membrane by Lgt. Both human and murine macrophages showed higher phagocytic activity towards ppiA and lgt mutants than the wild-type, indicating that the presence of PpiA suppresses phagocytosis of S. gordonii. Human macrophages treated with dextran sulfate had significantly impaired phagocytosis of S. gordonii, suggesting that class A scavenger receptors in human macrophages are involved in the phagocytosis of S. gordonii. These results provide evidence that S. gordonii lipoprotein PpiA plays an important role in inhibiting phagocytic engulfment and in evasion of the host immune response.

INTRODUCTION

Streptococcus gordonii is a commensal gram-positive bacterium that is commonly found in the human oral cavity. It plays a significant role as a pioneer colonizer in dental plaque development (Kolenbrander et al., 2002). Streptococcus gordonii is also well known for its ability to colonize damaged heart valves, where it is frequently identified as the primary etiological agent of infective endocarditis (IE) (Baddour, 1994; Durack, 1995). Viridans group streptococci are the most common cause of native valve endocarditis in humans, accounting for 45-80% of cases (Bayliss et al., 1983; van der Meer et al., 1991). A variety of virulence factors have been implicated in the initial bacterial colonization of cardiac valve surfaces (Baddour et al., 1989; Herzberg et al., 1990; Manning et al., 1994; Scheld & Sande, 1995). Based on these findings, the ability of S. gordonii to resist or avoid host cellular and humoral defenses

seems to be important for IE. However, the mechanism by which streptococci escape the host innate immune system during the progression of IE is not well understood.

Phagocytosis of bacterial pathogens is a crucial event in the innate immune defense of the host. Many scavenger receptors (SRs) act as pattern recognition receptors for bacterial pathogens (Mukhopadhyay et al., 2004; Areschoug & Gordon, 2008). Eight different classes of SRs have been proposed (A-H) according to their overall multi-domain structure (Murphy et al., 2005). Of these, class A SRs, including scavenger receptor A (SR-A; consisting of SR-AI, SR-AII and SR-AIII, alternate spliced forms of the same gene) and macrophage receptor with collagenous structure (MARCO), are well characterized. SR-A and MARCO are primarily expressed on phagocytes, where they act as phagocytic receptors to mediate the phagocytosis of pathogenic bacteria (Murphy et al., 2005), including Streptococcus pneumoniae, Staphylococcus aureus, Neisseria meningitidis, Clostridium sordellii and Escherichia coli (van der Laan et al., 1999; Peiser et al., 2000; Arredouani et al., 2004; Mukhopadhyay et al., 2006; Thelen et al., 2010). Recent research suggests that bacterial surface proteins are major ligands for many SRs (Jeannin et al., 2005; Peiser et al., 2006; Areschoug et al., 2008; Plüddemann et al., 2009); however, the interactions between bacterial surface proteins and SRs have not been elucidated.

Bacterial surface proteins are anchored to their cell envelopes by several distinct mechanisms (Navarre & Schneewind, 1999; Cossart & Jonguieres, 2000) and play important roles in the interaction between bacteria and their environments (Sutcliffe & Russell, 1995; Navarre & Schneewind, 1999). Lipoproteins, a major group of surface proteins, have N-terminal lipid modifications, and are thought to be linked to the bacterial cell membrane. Lipoproteins were first identified in Escherichia coli (Hantke & Braun, 1973) and have since been identified as membrane constituents in all types of bacteria. A proposed maturation mechanism for gram-positive bacterial lipoprotein is summarized in Fig. 1. Lipoproteins are initially synthesized as precursors, with an N-terminal signal sequence, and are translocated across the cytoplasmic membrane via the Sec pathway (Sugai & Wu, 1992). The signal sequences of lipoproteins have a consensus motif called a 'lipo-box', which contains the invariable N-terminal cysteine of the mature lipoprotein.

The diacylglyceryl moiety is transferred to the sulfhydryl group of the N-terminal cysteine by the prolipoprotein diacylglyceryl transferase (Lgt) (Sankaran & Wu, 1994; Qi et al., 1995) (Fig. 1A), followed by cleavage of the signal peptides by the lipoprotein-specific type II signal peptidase (Tokunaga et al., 1984; Tjalsma et al., 1999) (Fig. 1A) to generate mature functional lipoproteins. Lipoproteins contribute to nutrient acquisition (Perego et al., 1991; Russell et al., 1992; Alloing et al., 1994), adherence (Jenkinson, 1994; Kolenbrander et al., 1998), adaptation to environmental changes (Kappes et al., 1999) and protein maturation (Overweg et al., 2000). In addition, lipoproteins are involved in the virulence of bacterial pathogens (Stoll et al., 2005; Basavanna et al., 2009; Das et al., 2009; Nguyen et al., 2010). Hence, lipoproteins are predicted to play important roles in the interactions between pathogenic bacteria and their hosts. The lipoprotein HppA has been proposed to be an oligopeptide-binding protein (Jenkinson et al., 1996). However, the relationship between HppA and lipoprotein modification enzymes has not been demonstrated in S. gordonii. In a previous study, we confirmed that peptidyl-prolyl cis/ trans-isomerase (PpiA) from Streptococcus mutans is a lipoprotein by demonstrating the link between Lgt and PpiA in surface localization. PpiA also plays an inhibitory role in the evasion of professional phagocytosis by macrophages (Mukouhara et al., 2011). Computational analysis of the S. gordonii DL1 genome database using a 'lipo-box' motif revealed that this bacterium has many putative lipoproteins. In this study, we identified a putative lipoprotein, PpiA, and examined the role of S. gordonii PpiA in phagocytosis by comparing the phagocytic activity of macrophages against the wild-type and ppiA mutant strains.

METHODS

Bacterial strains and growth conditions

Streptococcus gordonii 10558 (wild-type) and its isogenic mutants were grown anaerobically ($80\% N_2$, $10\% H_2$, $10\% CO_2$) at 37° C in Todd–Hewitt broth medium (Difco Laboratories, Detroit, MI) (Igarashi *et al.*, 2003). Strains JM109 and BL21 of *E. coli* were used as plasmid hosts and were grown aerobically either on Luria–Bertani (Invitrogen, Carlsbad, CA) agar or in Luria–Bertani broth at 37° C. When required, antibiotics were added to the medium at the

Figure 1 (A) Proposed bacterial lipoprotein maturation mechanism. A prelipoprotein is synthesized with lipoprotein-specific signal peptidase in cytosol. The prelipoprotein is transferred to the cell membrane via the Sec pathway where Lgt catalyses the lipid modification with a diacylgly-ceryl group (a). The lipid-modified prelipoprotein is then cleaved at signal peptide by LspA to mature lipoprotein (b). The matured lipoprotein is fixed on the cell membrane and functions. The loss of Lgt will result in a change in localization of lipoproteins from cell membrane to the culture supernatant. (B) Construction of *Streptococcus gordonii* mutants. The *S. gordonii* mutants used in this study were constructed with a vectorless PCR strategy.

following concentrations: 10 μ g ml⁻¹ erythromycin for *S. gordonii*; 50 μ g ml⁻¹ tetracycline for *S. gordonii*; and 50 μ g ml⁻¹ ampicillin for *E. coli*.

Cell culture

Human macrophage-like cells (designated human macrophages) were prepared as described previously (Mukouhara *et al.*, 2011). Briefly, human acute monocytic leukemia cells, THP-1 (RCB1189), purchased from the Cell Engineering Division of RIKEN Bio-Resource Center (Tsukuba, Ibaraki, Japan), were cultured in RPMI-1640 medium (Wako, Japan) supplemented with 10% heat-inactivated fetal bovine serum, 100 U ml⁻¹ penicillin and 100 μ g ml⁻¹ streptomycin at 37°C in a 5% CO₂ humidified incubator. To facilitate differentiation into macrophages, THP-1

cells were cultured at an initial density of 1×10^6 cells per well on 24-well plates and treated with phorbol 12-myristate 13-acetate (PMA), at a final concentration of 10 nm, for 24 h. Following PMA treatment, the differentiated cells were washed three times with serum-free RPMI-1640 and incubated with cell culture medium. The resultant macrophage-like THP-1 cells were used for the following phagocytosis assay.

Preparation of murine peritoneal macrophages

Murine peritoneal macrophages (designated murine macrophages) were obtained as described previously (Mukouhara *et al.*, 2011) by permission of the Committee on Animal Experimentation (Showa University, Tokyo, Japan). Briefly, murine peritoneal macrophages

were accumulated by intraperitoneal injection of 1 ml 4% thioglycollate medium into 6-week-old male DDY mice (Saitama Experimental Animals Supply Co., Ltd, Saitama, Japan). At 4 days post-injection, the accumulated macrophages were harvested by peritoneal lavage with RPMI-1640 medium. The cells were plated at 1 \times 10⁶ cells per well in 24-well tissue culture plates and incubated for 2 h at 37°C in a 5% CO₂ humidified incubator, and then washed with medium to remove non-adherent cells. The adherent cells were used for the phagocytosis assay.

Phagocytosis assay

Phagocytosis of S. gordonii by human and murine macrophages was assessed by antibiotic protection assay, as described previously (Mukouhara et al., 2011). Briefly, S. gordonii suspensions (2×10^6) colony-forming units) were added to the human or murine macrophages (5 \times 10⁵ cells per well) in triplicate and incubated for 45 min. After washing with phosphate-buffered saline (PBS), fresh RPMI-1640 medium (1 ml per well) containing 100 U ml⁻¹ penicillin and 100 μ g ml⁻¹ streptomycin was added to kill extracellular S. gordonii. The infected monolayers were washed three times with PBS and lysed with distilled water to release intracellular S. gordonii. Serial dilutions of the lysates were plated onto Todd-Hewitt agar plates and incubated anaerobically at 37°C for 48 h. The percentage of surviving S. gordonii was calculated by counting recovered colony-forming units. For intracellular survival assays, after killing the extracellular bacteria, the infected macrophages were incubated for an additional 1, 3, 6 or 24 h, and then lysed with distilled water to count intracellular bacteria, as described above.

In the blocking experiment for class A SRs, human macrophages were incubated for 1 h with dextran sulfate or chondroitin sulfate before *S. gordonii* infection, as described previously (Bowdish *et al.*, 2009). The cell viability of human macrophages treated with dextran sulfate or chondroitin sulfate (each at a final concentration of 100 μ g ml⁻¹ or greater) was evaluated by trypan blue assay (Fardini *et al.*, 2011). Briefly, trypan blue (Invitrogen) was added to the monolayers at 1 : 10 dilution and incubated for 5 min at 37°C in a 5% CO₂ humidified incubator. The cells were then observed immediately using a Nikon TMS

inverted microscope (Nikon, Japan) at $100 \times$ magnification. Blue-stained cells were counted as non-viable.

DNA manipulation

Genomic DNA from *S. gordonii* 10558 was extracted with a GenElute bacterial genomic DNA kit (Sigma-Aldrich, St Louis, MO). Plasmid DNA was extracted using a Wizard miniprep purification kit (Promega, Madison, WI) (Igarashi *et al.*, 2003).

Construction of S. gordonii mutants

The ppiA-, hppA- and lgt-deficient S. gordonii 10558 mutants were generated by polymerase chain reaction (PCR) -based gene replacement with an antibiotic resistance gene cassette (Fig. 1B). The S. gordonii DL1 genome sequence (GenBank accession number CP000725) was used as a reference to design the primers. All primers and plasmids used in this study are listed in Table 1. A 294-base-pair fragment containing the upstream flanking region and upper portion of the ppiA gene was amplified using the P1-F/P2-R primer pair. A 261-bp fragment containing the downstream flanking region and lower portion of the ppiA gene was amplified using the P3-F/P4-R primer pair (Fig. 1B). The tetracycline-resistance gene (Tc^{r}) was amplified from pUCTet using the primer pair P2-F/P3-R. Reverse primer P2-R and forward primer P3-F were synthesized with additional nucleotides complementary to the 5'- and 3'-terminal regions of Tcr, respectively. All three fragments were annealed in one reaction and amplified by PCR using the primer pair P1-F/P4-R. Finally, a 520-bp region of the ppiA gene (nucleotides 151–671) was replaced with the Tc^{r} gene in the resultant amplicon, which was then used to transform S. gordonii 10558 cells. The ppiA-deficient mutants were selected on Todd-Hewitt agar plates containing 50 µg ml⁻¹ tetracycline. Replacement of *ppiA* with the *Tc*^r gene was verified by PCR. Similarly, the lgt gene was knocked out by replacement of the 300-513-bp region with Tcr. The hppA gene was completely replaced by Tc^{r} by similar strategy.

RNA isolation and quantitative real-time PCR

Total RNA from human macrophages infected with wild-type *S. gordonii*, the *ppiA* mutant, or medium (uninfected control) was extracted using an RNeasy

Primers/plasmids	Sequences/relevant characteristics ¹	Reference
Primers		
ppiAP1-F	GGTGGATCAACCTTTCTGACTTTCCC	This work
ppiAP2-F	GCAAGCAGTGCTGAAGCTAGCAAAATGAAAATTATTAATATTGGAGTT	This work
ppiAP2-R	AACTCCAATATTAATAATTTTCATTTTGCTAGCTTCAGCACTGCTTGC	This work
ppiAP3-F	CAATAAAATAACTTAGTGGCCAAGTTATAGACGGCATGGA	This work
ppiAP3-R	TCCATGCCGTCTATAACTTGGCCACTAAGTTATTTTATT	This work
ppiAP4-R	CCCAAGGAGCAGTTTGTTGACAGT	This work
lgtP1-F	TCGGACCATTTGCTATTCGCTGGT	This work
lgtP2-F	TGGAGGACTGATTACAGGTGCTCTATGAAAATTATTAATATTGGAGTT	This work
lgtP2-R	AACTCCAATATTAATAATTTTCATAGAGCACCTGTAATCAGTCCTCCA	This work
lgtP3-F	GTACGATATATGTTCAATAAAATAACTTAGCTTTATGAATCTACTTGGAACTTGCTAGGC	This work
lgtP3-R	GCCTAGCAAGTTCCAAGTAGATTCATAAAGCTAAGTTATTTTATTGAACATATATCGTAC	This work
lgtP4-R	AAGAGAGCAGACCACTGGGAA	This work
hppAP1-F	TCCGTAATTCCCCCCTATCTCAA	This work
hppAP2-F	TAAATTTGAAATTGAAATGGAGAATATACGATGAAAATTATTAATATTGGAGTTTTAGCT	This work
hppAP2-R	AGCTAAAACTCCAATATTAATAATTTTCATCGTATATTCTCCATTTCAATTTCAAATTTA	This work
hppAP3-F	GTACGATATATGTTCAATAAAATAACTTAGCAAGAAGAGTTAGAAAAAACACGTGAAATAA	This work
hppAP3-R	TTATTTCACGTGTTTTTCTAACTCTTCTTGCTAAGTTATTTTATTGAACATATATCGTAC	This work
hppAP4-R	CGTATCATAATAATCCACATAGCCCATACG	This work
rPpiAF	TTTT <u>GCATGC</u> TGTACTAGTATCCAACGTGTCTTGC	This work
rPpiAR	TTTT <u>GTCGAC</u> TTATTTTTTAAAGTTGTAATCCTTGATCAC	This work
real 18SrRNAF	GGCGCCCCTCGATGCTCTTAG	This work
real 18SrRNAR	GCTCGGGCCTGCTTTGAACACTCT	This work
real MARCOF	ATCCTGCTCACGGCAGGTACT	This work
real MARCOR	GCACATCTCTAGCATCTGGAGCT	This work
real SR-AF	TCCTTGCAGAGTCTGAATATGACACT	This work
real SR-AR	CCTCCTGTTGCTTTGCTGTAGATT	This work
Plasmids		
pUCTet	pUC18 carrying <i>Tc</i> ^r	Arimoto and Igarashi (2008)
pGEX-PpiA	pGEX-4T-2 expression vector containing a partial ppiA gene	This work

Table 1 Oligonucleotide primers and plasmids used in this study

¹Tc^r, tetracycline resistance gene; single underline, *Sph*l; double underline, *Sal*l restriction site.

minikit (Qiagen, Germantown, MD) according to the manufacturer's instructions. Extracted RNA samples were treated with RNase-free DNase I (Qiagen) to remove contaminating genomic DNA. Total RNA (2 µg) was reverse-transcribed using a Superscript reverse transcriptase (RT) kit with oligo(dT) primers (Invitrogen) according to the manufacturer's protocol. Quantitative real-time PCR (gRT-PCR) was performed in a 1 \times SYBR green master mix (Applied Biosystems, Warrington, UK) with specific primer pairs (2 ng μ l⁻¹) and 0.5 ng μ l⁻¹ cDNA sample in a 20-µl total volume. Thermal cycler conditions included one cycle at 95°C for 90 s, followed by 40 cycles of 95°C for 15 s and at 60°C for 1 min. Non-template controls were also included to confirm the absence of primer-dimer formation. All samples were analysed in triplicate on an ABI Prism 7000 detection system (Life Technologies, Foster City, CA). The expression level of each target gene was normalized using the 18S rRNA gene as an internal control. Values are expressed as fold increases in mRNA levels relative to those for uninfected cells. All primers used for the qRT-PCR assay are listed in Table 1.

Expression and purification of S. gordonii PpiA

The partial *ppiA* gene (nucleotides 51–804) was amplified from the genomic DNA of *S. gordonii* 10558 using the rPpiA-F/rPpiA-R primer pair, and then digested with *Sph*I and *SaI*I restriction enzymes and ligated into the pGEX6P-1 expression vector (GE Healthcare UK Ltd., Buckinghamshire, England). The resultant plasmid was designated pGEX-PpiA. The PpiA protein was overexpressed as a GST-tagged recombinant protein from pGEX-PpiA in *E. coli* BL21, and was purified as a single band using the glutathione S-transferase purification system, as recommended by the supplier (GE Healthcare) (Igarashi *et al.*, 2004). The purified recombinant PpiA protein was used as an antigen to prepare rabbit anti-PpiA serum (Igarashi *et al.*, 2003).

Western blot analysis

Streptococcus gordonii cells were treated with 20% (volume/volume) Triton X-114 to extract membrane lipoproteins (Shibata et al., 1997). Briefly, S. gordonii strains were cultured at 37°C to an optical density at 600 nm (OD₆₀₀) of 0.5. The cell pellets were harvested, washed three times with PBS, and adjusted to $OD_{600} = 1.0$ with PBS. The adjusted cells were suspended in a 10 mM Tris-HCl buffer (pH 7.4) containing 0.15 M NaCl. The cell suspension (0.9 ml) was mixed with 0.1 ml 10% Triton X-114 working stock solution and rotated at 4°C for 24 h, followed by centrifugation at 10,000 g for 5 min at 4°C. The supernatant was transferred to a new tube and incubated at 37°C for 5 min. The sample was then centrifuged at 10,000 g for 3 min. The upper aqueous phase was again treated with Triton X-114 as described previously. Excess methanol was added to the lower phase to precipitate the lipophilic fraction, which included bacterial lipoproteins, and the mixture was incubated overnight at - 80°C. The samples were then centrifuged at 10,000 g for 5 min at 4°C. The supernatant was removed and the pellet was resuspended in a 10 mm octylglucoside solution. The resulting solution was used as the Triton X-114 extract (TX-114 extract). The bacterial culture supernatant was concentrated 50-fold with a Viva-Spin column (Sartorius, Goettingen, Germany) and mixed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis buffer. The amounts of the concentrated proteins were determined by measuring the optical density at 280 nm. The TX-114 extracts from S. gordonii cultures of equal cell density, along with equal amounts of culture supernatant proteins, were analysed by Western blotting with rabbit anti-PpiA serum, as described previously (Igarashi et al., 2003).

Small interfering RNA transfection

To introduce small interfering RNA (siRNA) into THP-1 cells, 5×10^5 THP-1 cells were incubated with 30 µl 15 pmol µl⁻¹ siRNA containing 10 µl

MultiFectam transfection reagent (Promega, Madison, WI) in RPMI-1640 medium for 4 h. MARCO-specific and SR-A-specific siRNA and control siRNA (product numbers: MARCO, sc-75747; SR-A, sc-44116; control, sc-37007) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA).

RESULTS

Cell surface anchoring of *S. gordonii* PpiA is catalysed by Lgt

Computational analysis of the S. gordonii DL1 genome database indicated that PpiA is a putative lipoprotein. To clarify the relationship between lipid modification enzymes, Lgt, and PpiA in S. gordonii, the localization of PpiA was analysed as described previously (Arimoto & Igarashi, 2008). For this purpose, we constructed lgt-deficient and ppiA-deficient mutants by partial replacement of the target genes with an antibacterial resistance cassette. The protein profiles of the TX-114 extracts, along with those of the wild-type and lgt-deficient and ppiA-deficient culture supernatants, were compared by Western blot analysis with anti-PpiA serum. Wild-type PpiA was detected in the TX-114 extract, but not in the culture supernatant (Fig. 2A,B, lane 1). PpiA was not detected in either the TX-114 extract or the culture supernatant of the ppiA mutant (Fig. 2A,B, lane 2), confirming that the observed immunoreactive 29-kDa protein band

Figure 2 Western blot analysis of released and membrane-associated PpiA with rabbit anti-PpiA serum. TX-114 extracts (A) and culture supernatants (B) prepared from *Streptococcus gordonii* cells were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. PpiA (29 kDa) was detected by Western blotting with anti-PpiA serum. Lane 1, wild-type strain; lane 2, *ppiA* mutant; lane 3, *lgt* mutant; lane 4, recombinant GST-tagged PpiA protein (positive control); lane M, size marker.

was the PpiA protein, derived from the *ppiA* gene. On the other hand, in the *lgt* mutant, PpiA was found in the culture supernatant, but was not present in the TX-114 extract (Fig. 2A,B, lane 3). These results indicated that PpiA is a lipoprotein, and is anchored in the *S. gordonii* cell membrane by the Lgt enzyme.

Phagocytosis and intracellular survival of *S. gordonii* strains

To elucidate the role of S. gordonii PpiA in phagocytosis by macrophages, the wild-type and ppiA, hppA and lgt mutants were subjected to a phagocytosis assay. The number of viable S. gordonii cells phagocytosed by THP-1-derived human macrophages was then counted on agar plates. Compared with the wildtype, the ppiA and lgt mutants were significantly more susceptible to phagocytosis. The numbers of ppiA and lgt mutant cells phagocytosed by human macrophages were approximately 11.0- and 11.2-fold higher than that of the wild-type, respectively (Fig. 3A). The phagocytic activity of murine macrophages was similar to human macrophages: the number of ppiA mutant cells phagocytosed by murine macrophages was approximately 45-fold greater than that of the wild-type (Fig. 3B). The hppA mutant of S. gordonii was used to examine the involvement of lipoproteins in phagocytosis. HppA was proposed to be an oligopeptide-binding lipoprotein, and is characterized genetically and biochemically in S. gordonii (Jenkinson et al., 1996). As shown in Fig. 3A, phagocytosis of the hppA mutant by human macrophages was lower than the ppiA and lgt mutants, and was comparable to that of wild-type 10558. In addition, to determine whether the ppiA and lqt mutants were better able to survive in macrophages than the wild-type, intracellular survival of S. gordonii was examined. The result showed no differences in the intracellular survival rates of the S. gordonii strains tested (Fig. 3C). These results strongly suggested that the S. gordonii PpiA lipoprotein is specifically involved in antiphagocytic activity.

Streptococcus gordonii is phagocytosed by human macrophages via class A scavenger receptors

To determine whether class A SRs, SR-A and MARCO, are involved in phagocytosis of *S. gordonii*,

Figure 3 Phagocytosis of Streptococcus gordonii by macrophages. (A) Phagocytosis of the wild-type 10558 strain (WT), ppiA mutant, lgt mutant and hppA mutant by THP-1-derived macrophages (human macrophages). (B) Phagocytosis of the wild-type 10558, ppiA mutant and lgt mutant by murine peritoneal macrophages (murine macrophages). Data shown represent means \pm standard deviations of results from three independent experiments. Phagocytosis rate is expressed as the ratio of the number of viable S. gordonii cells recovered to the total number of applied S. gordonii cells. Statistical significance (P < 0.05; Dunnett's test) is depicted by an asterisk. (C) The intracellular survival of S. gordonii in human macrophages was compared over a period of 1, 3, 6 and 24 h at postinfection. The relative survival rate was estimated by plating the lysate of infected macrophages and counting the number of colony-forming units (CFU) at each time-point. The relative survival rate is expressed as the ratio of the number of CFU at each time-point to the number of CFU at 0 h. Wild-type 10558 (•) and the ppiA mutant (□).

the effect of an SR-A inhibitor, dextran sulfate, was examined. As shown in Fig. 4A, the number of phagocytosed cells was significantly decreased by dextran sulfate treatment. In contrast, the negative control (similar in structure) agent, chondroitin sulfate (100 μ g ml⁻¹), had no effect on the phagocytosis of *S. gordonii*. Neither dextran sulfate nor chondroitin sulfate had any effect on the viability of THP-1 cells, as confirmed by trypan blue staining (data not

Figure 4 (A) Effect of dextran sulfate on phagocytic activities of human macrophages. Phagocytic activity of human macrophages against *Streptococcus gordonii* cells was assessed after treatment with dextran sulfate. (B) Differential transcription of class A SRs in human macrophages. Transcriptional levels of scavenger receptor A (SR-A) and macrophage receptor with collagenous structure (MARCO) genes in human macrophages stimulated with the wild-type strain and *ppiA* mutant. The relative expression levels (to unstimulated human macrophages) for SRs, corrected for 18S rRNA, are shown. Data shown represent means \pm standard deviations of results from three independent experiments. Statistical significance (P < 0.05; Dunnett's test) is depicted by an asterisk.

shown). These results indicated that class A SRs on human macrophages play important roles in the uptake of *S. gordonii*.

Role of *S. gordonii* PpiA in phagocytosis by macrophages

Because dextran sulfate inhibited the phagocytosis of *S. gordonii* by macrophages, we focused on SR-A and MARCO. RNA from human macrophages was prepared following 45 min of stimulation by wild-type *S. gordonii* or the *ppiA* mutant, and transcriptional levels of SRs were measured by qRT-PCR (Fig. 4B). The mRNA levels of both the SRs in human macrophages stimulated by the *ppiA* mutant were twofold higher than those infected with wild-type. This result suggested that transcriptional levels of both SR-A and

MARCO were upregulated by the *S. gordonii ppiA* mutant.

Effect of class A SR siRNA on *S. gordonii* uptake by macrophages

To elucidate the relationship between the decreased transcription of MARCO and SR-A in macrophages during phagocytosis of *S. gordonii*, THP-1 cells transfected with MARCO-specific or SR-A-specific siRNA were challenged in an *S. gordonii* phagocytosis assay. Endogenous expression of MARCO and SR-A was decreased by 40% and 50%, respectively, in

Figure 5 (A) Transfection of THP-1 cells with macrophage receptor with collagenous structure (MARCO) -specific and scavenger receptor-A (SR-A) -specific small interfering (si) RNAs. THP-1 cells were transfected with control siRNA or MARCO-specific or SR-A-specific siRNA. (B) Phagocytosis of the *Streptococcus gordonii* wild-type and *ppiA* mutant by human macrophages transfected with MARCO-specific siRNA. (C) Phagocytosis of the *S. gordonii* wild-type and *ppiA* mutant by human macrophages transfected with SR-A-specific siRNA. Data shown represent means ± standard deviations of results from three independent experiments. Statistical significance (*P* < 0.05; Dunnett's test) is depicted by an asterisk.

cells transfected with corresponding siRNA, compared with those transfected with control siRNA (Fig. 5A). There was no apparent difference in the number of phagocytosed *S. gordonii ppiA* mutants between THP-1 cells transfected with MARCOspecific or SR-A-specific siRNA and those transfected with control siRNA (Fig. 5B,C). These results suggested that decreased transcription of either MARCO or SR-A alone did not suppress *S. gordonii* uptake by human macrophages.

DISCUSSION

Surface proteins are thought to play important roles in the establishment of IE, and several surface proteins implicated in IE have been identified in S. gordonii. CshA, a cell wall-anchored polypeptide, mediates binding to immobilized human fibronectin, which is thought to be an important step in the pathogenesis of IE (Lowrance et al., 1990; McNab et al., 1996). A synergistic function for Hsa and SspA/SspB has been suggested in platelet aggregation (Jakubovics et al., 2005), and recently, a novel cell wall-anchored protein, PadA, has been identified and shown to bind to the platelet fibrinogen receptor GPIIbIIIa (Petersen et al., 2010). In addition, the sialic acid-binding adhesin, Hsa, and the serine-rich cell wall glycoprotein, GbpB, are important in the rat model of IE (Takahashi et al., 2006; Xiong et al., 2008). In the present study, we identified an S. gordonii virulence lipoprotein, PpiA, which is associated with evasion and survival in innate immune cells such as macrophages. PpiA was annotated as a putative lipoprotein because it contains a lipo-box motif at the C-terminus of the signal peptide. However, it has not been demonstrated experimentally in S. gordonii whether the PpiA lipoprotein is anchored to the cell membrane by the Lgt enzyme. We compared the localization of PpiA in wild-type S. gordonii as well as in the lgt mutant strain and found that Lgt catalyses PpiA anchoring to the cell membrane in the wild-type, implying that PpiA is modified by Lgt.

Phagocytosis assays revealed that the *S. gordonii lgt* mutant was more highly phagocytosed by macrophages than the wild-type 10558 strain, which suggests that the loss of lipoproteins from the cell surface is strongly related to increased susceptibility to phagocytosis. A similar phenomenon was also observed with the loss of the PpiA lipoprotein; however, *S. gordonii* with reduced HppA lipoprotein

showed no difference in susceptibility to phagocytosis by human macrophages. These results suggest that PpiA is specifically responsible for the anti-phagocytic activity of S. gordonii towards human macrophages. To generalize such a possibility, susceptibility to phagocytosis of other S. gordonii lipoprotein mutants must be tested. In a previous study, we identified the PpiA lipoprotein of S. mutans as a homolog of the pneumococcal lipoprotein rotamase A (SIrA) (Mukouhara et al., 2011). Similar reductions in phagocytosis have been observed for the sIrA mutant of S. pneumoniae and for the S. mutans ppiA mutant (Hermans et al., 2006; Mukouhara et al., 2011). In addition to the ppiA genes of S. gordonii and S. mutans, a pneumococcal SIrA-homologous putative lipoprotein gene has been identified, and is closely related to those found in other Streptococcus species, including S. pyogenes, S. agalactiae, S. suis, S. mitis and S. sanguinis. Therefore, it is likely that the SIrA homologs in these bacteria are also associated with anti-phagocytic activity.

Phagocytosis assays using dextran sulfate suggested that class A SRs act as phagocytic receptors for S. gordonii (Fig. 4A). A similar phagocytosis assay using HL60 (human promyelocytic leukemia cells) was also performed, and revealed that neutrophils (HL60) treated with dextran sulfate were not impaired in their ability to phagocytose bacteria (data not shown). This result might support the idea that dextran sulfate blocks class A SRs on macrophages only. Because expression of class A SRs is enhanced by bacterial infection (van der Laan et al., 1999; Doyle et al., 2004; Mukhopadhyay et al., 2004), we investigated whether the transcriptional levels of SR-A and MARCO were induced by S. gordonii infection. As shown in Fig. 4B, infection with the ppiA mutant enhanced expression of MARCO and SR-A at the transcriptional level in human macrophages, compared with those in cells that had been infected with wild-type. This finding suggested that S. gordonii PpiA negatively regulates expression of MARCO and SR-A, or that PpiA suppresses the upregulation of these molecules in human macrophages (Fig. 4B). However, THP-1 cells transfected with SR-A-specific or MARCO-specific siRNA phagocytosed S. gordonii ppiA mutant cells at a level comparable with control siRNA, indicating that reduced transcription of SR-A or MARCO does not affect the phagocytosis of S. gordonii. The S. gordonii PpiA affected the transcription of both the MARCO and SR-A genes, whereas S. mutans PpiA only affects MARCO expres-

sion (Mukouhara et al., 2011). It has been suggested that the role of SR-A in bacterial phagocytosis depends on the microorganism (Peiser et al., 2000). It is likely that because the roles of SIrA-homologous lipoproteins are species-dependent, the contribution of SR-A to phagocytosis is also dependent on the microorganism. Until now, the molecular mechanism of the anti-phagocytic activity of the PpiA lipoprotein in S. gordonii has been unclear. Negative regulation of MARCO expression by E. coli infection has been reported (Pinheiro da Silva et al., 2007). This previous study determined that binding of *E. coli* to CD16 (FcyRIII) triggers an FcyR pathway, which causes negative regulation of MARCO expression; however, interaction of E. coli components with CD16 has not been shown. In addition, grampositive Staphylococcus aureus shows no interaction with CD16. These findings suggest that CD16-related MARCO regulation is specific to gram-negative bacteria. Hence, negative regulation of MARCO by grampositive bacteria is not well understood. On the other hand, Toll-like receptors (TLRs) have been proposed to regulate the bacterial phagocytic activity of macrophages (Doyle et al., 2004; Amiel et al., 2009). It has been reported that SR-A+/- TLR4+/-, but not SR-A^{+/-} TLR2^{+/-}, bone marrow-derived dendritic cells have an impaired ability to phagocytose E. coli, whereas phagocytosis of Staphylococcus aureus is impaired in SR-A^{+/-} TLR2^{+/-} bone marrow-derived dendritic cells (Amiel et al., 2009). As bacterial lipoproteins are major ligands for TLR2 (Akira, 2003), S. gordonii lipoproteins, including PpiA, seem to be candidates for the TLR2 ligand. However, we showed that the S. gordonii lgt mutant, in which all lipoproteins were removed from the cell surface, was more susceptible to phagocytosis than wild-type strain 10558. This suggests that recognition of lipoproteins by TLR2 is not directly related to regulation of expression of class A SRs and the subsequent bacterial phagocytosis by macrophages.

It has been suggested that lipopolysaccharide and lipoteichoic acid are recognized by both MARCO and SR-A. In addition, recent studies have suggested that bacterial surface proteins play an important role as target molecules for these receptors. For example, surface proteins from *N. meningitidis* have been shown to be ligands for MARCO (Jeannin *et al.*, 2005; Peiser *et al.*, 2006; Areschoug *et al.*, 2008; Plüddemann *et al.*, 2009), and SR-A has been shown to bind to the Blr surface lipoprotein of

388

S. agalactiae (Areschoug et al., 2008). From this information, we initially hypothesized that S. gordonii lipoproteins might be ligands for SR-A. However, this possibility seems unlikely because both the ppiA mutant and the lgt mutant were as effectively phagocytosed by macrophages as the wild-type (Fig. 3A, B). It is probable that the loss of lipoprotein PpiA changes the environment on the cell surface of the mutant, in addition to enhancing the expression of class A SRs on human macrophages. Also, such alteration might confer suitable surface conditions for easy recognition of target molecules on bacteria by MARCO and/or SR-A. Therefore, we speculate that S. gordonii PpiA might be involved in preventing the recognition of surface molecules (lipoteichoic acid and/or other surface proteins) by class A SRs, which negatively influences SR expression.

Our data showed that S. gordonii PpiA is anchored on the cell membrane by Lgt, and further indicated that loss of Lgt affects the physiological function of PpiA. Therefore, Lgt could be an attractive target molecule for therapies to prevent S. gordonii-related IE, though further studies should be conducted to verify this. Finally, we believe the present study is the first to demonstrate the relationship between lipoproteins and the lipid modification enzyme, Lgt, in S. gordonii. Streptococcus gordonii PpiA is lipid-anchored to the cell membrane by the Lgt enzyme, and plays an important role in anti-phagocytic activity. Therefore, we conclude that PpiA could be a useful antigen for vaccine development, and represents an attractive target molecule to develop new treatments to protect against IE, with which *S. gordonii* infection is closely associated.

ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in Aid for Young Scientists (B) (grant no. 23792113) and by the Private University High Technology Research Center Project (grant no. S1001010) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

- Akira, S. (2003) Mammalian Toll-like receptors. *Curr Opin Immunol* **15**: 5–11.
- Alloing, G., de Philip, P. and Claverys, J.P. (1994) Three highly homologous membrane-bound lipoproteins partic-

ipate in oligopeptide transport by the Ami system of the gram-positive *Streptococcus pneumoniae*. *J Mol Biol* **241**: 44–58.

Amiel, E., Alonso, A., Uematsu, S., Akira, S., Poynter, M.E. and Berwin, B. (2009) Pivotal Advance: toll-like receptor regulation of scavenger receptor-A-mediated phagocytosis. *J Leukoc Biol* **85**: 595–605.

Areschoug, T. and Gordon, S. (2008) Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. *Contrib Microbiol* **15**: 45–60.

Areschoug, T., Waldemarsson, J. and Gordon, S. (2008) Evasion of macrophage scavenger receptor A-mediated recognition by pathogenic streptococci. *Eur J Immunol* **38**: 3068–3079.

Arimoto, T. and Igarashi, T. (2008) Role of prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein-specific signal peptidase II (LspA) in localization and physiological function of lipoprotein MsmE in *Streptococcus mutans. Oral Microbiol Immunol* **23**: 515–519.

Arredouani, M., Yang, Z., Ning, Y. *et al.* (2004) The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. *J Exp Med* **200**: 267–272.

Baddour, L.M. (1994) Virulence factors among gram-positive bacteria in experimental endocarditis. *Infect Immun* **62**: 2143–2148.

Baddour, L.M., Christensen, G.D., Lowrance, J.H. and Simpson, W.A. (1989) Pathogenesis of experimental endocarditis. *Rev Infect Dis* **11**: 452–463.

Basavanna, S., Khandavilli, S., Yuste, J. *et al.* (2009) Screening of *Streptococcus pneumoniae* ABC transporter mutants demonstrates that LivJHMGF, a branched-chain amino acid ABC transporter, is necessary for disease pathogenesis. *Infect Immun* **77**: 3412–3423.

Bayliss, R., Clarke, C., Oakley, C.M., Somerville, W., Whitfield, A.G. and Young, S.E. (1983) The microbiology and pathogenesis of infective endocarditis. *Br Heart J* **50**: 513–519.

Bowdish, D.M., Sakamoto, K., Kim, M.J. *et al.* (2009) MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and *Mycobacterium tuberculosis*. *PLoS Pathog* **5**: e1000474.

Cossart, P. and Jonquieres, R. (2000) Sortase, a universal target for therapeutic agents against gram-positive bacteria? *Proc Natl Acad Sci USA* **97**: 5013–5015.

Das, S., Kanamoto, T., Ge, X. *et al.* (2009) Contribution of lipoproteins and lipoprotein processing to endocarditis

virulence in *Streptococcus sanguinis*. *J Bacteriol* **191**: 4166–4179.

Doyle, S.E., O'Connell, R.M., Miranda, G.A. *et al.* (2004) Toll-like receptors induce a phagocytic gene program through p38. *J Exp Med* **199**: 81–90.

Durack, D.T. (1995) Prevention of infective endocarditis. *N Engl J Med* **332**: 38–44.

Fardini, Y., Wang, X., Temoin, S. *et al.* (2011) *Fusobacterium nucleatum* adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. *Mol Microbiol* **82**: 1468–1480.

Hantke, K. and Braun, V. (1973) Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. *Eur J Biochem* **34**: 284–296.

Hermans, P.W., Adrian, P.V., Albert, C. *et al.* (2006) The streptococcal lipoprotein rotamase A (SIrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization. *J Biol Chem* **281**: 968–976.

Herzberg, M.C., Gong, K., MacFarlane, G.D. *et al.* (1990) Phenotypic characterization of *Streptococcus sanguis* virulence factors associated with bacterial endocarditis. *Infect Immun* **58**: 515–522.

Igarashi, T., Asaga, E. and Goto, N. (2003) The sortase of *Streptococcus mutans* mediates cell wall anchoring of a surface protein antigen. *Oral Microbiol Immunol* **18**: 266–269.

Igarashi, T., Morisaki, H. and Goto, N. (2004) Molecular characterization of dextranase from *Streptococcus rattus. Microbiol Immunol* **48**: 155–162.

Jakubovics, N.S., Kerrigan, S.W., Nobbs, A.H. *et al.* (2005) Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of *Streptococcus gordonii* with host receptors. *Infect Immun* **73**: 6629–6638.

Jeannin, P., Bottazzi, B., Sironi, M. *et al.* (2005) Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. *Immunity* **22**: 551–560.

Jenkinson, H.F. (1994) Cell surface protein receptors in oral streptococci. *FEMS Microbiol Lett* **121**: 133–140.

Jenkinson, H.F., Baker, R.A. and Tannock, G.W. (1996) A binding-lipoprotein-dependent oligopeptide transport system in *Streptococcus gordonii* essential for uptake of hexa- and heptapeptides. *J Bacteriol* **178**: 68–77.

Kappes, R.M., Kempf, B., Kneip, S. *et al.* (1999) Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in *Bacillus subtilis. Mol Microbiol* **32**: 203–216.

- Kolenbrander, P.E., Andersen, R.N., Baker, R.A. and Jenkinson, H.F. (1998) The adhesion-associated sca operon in *Streptococcus gordonii* encodes an inducible high-affinity ABC transporter for Mn2+ uptake. *J Bacteriol* **180**: 290–295.
- Kolenbrander, P.E., Andersen, R.N., Blehert, D.S., Egland, P.G., Foster, J.S. and Palmer, R.J.Jr (2002) Communication among oral bacteria. *Microbiol Mol Biol Rev* 66: 486–505.
- van der Laan, L.J., Dopp, E.A., Haworth, R. *et al.* (1999) Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria *in vivo. J Immunol* **162**: 939–947.
- Lowrance, J.H., Baddour, L.M. and Simpson, W.A. (1990) The role of fibronectin binding in the rat model of experimental endocarditis caused by *Streptococcus sanguis*. *J Clin Invest* **86**: 7–13.
- Manning, J.E., Hume, E.B., Hunter, N. and Knox, K.W. (1994) An appraisal of the virulence factors associated with streptococcal endocarditis. *J Med Microbiol* **40**: 110–114.
- McNab, R., Holmes, A.R., Clarke, J.M., Tannock, G.W. and Jenkinson, H.F. (1996) Cell surface polypeptide CshA mediates binding of *Streptococcus gordonii* to other oral bacteria and to immobilized fibronectin. *Infect Immun* 64: 4204–4210.
- van der Meer, J.T., van Vianen, W., Hu, E. *et al.* (1991) Distribution, antibiotic susceptibility and tolerance of bacterial isolates in culture-positive cases of endocarditis in The Netherlands. *Eur J Clin Microbiol Infect Dis* **10**: 728–734.
- Mukhopadhyay, S., Peiser, L. and Gordon, S. (2004) Activation of murine macrophages by *Neisseria meningitidis* and IFN-γ *in vitro*: distinct roles of class A scavenger and Toll-like pattern recognition receptors in selective modulation of surface phenotype. *J Leukoc Biol* **76**: 577–584.
- Mukhopadhyay, S., Chen, Y., Sankala, M. *et al.* (2006) MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for *Neisseria meningitidis. Eur J Immunol* **36**: 940–949.
- Mukouhara, T., Arimoto, T., Cho, K., Yamamoto, M. and Igarashi, T. (2011) Surface lipoprotein PpiA of *Streptococcus mutans* suppresses scavenger receptor MARCO-dependent phagocytosis by macrophages. *Infect Immun* **79**: 4933–4940.
- Murphy, J.E., Tedbury, P.R., Homer-Vanniasinkam, S., Walker, J.H. and Ponnambalam, S. (2005) Biochemistry and cell biology of mammalian scavenger receptors. *Atherosclerosis* **182**: 1–15.

- Navarre, W.W. and Schneewind, O. (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. *Microbiol Mol Biol Rev* **63**: 174–229.
- Nguyen, H.T., Wolff, K.A., Cartabuke, R.H., Ogwang, S. and Nguyen, L. (2010) A lipoprotein modulates activity of the MtrAB two-component system to provide intrinsic multidrug resistance, cytokinetic control and cell wall homeostasis in *Mycobacterium*. *Mol Microbiol* **76**: 348–364.
- Overweg, K., Kerr, A., Sluijter, M. *et al.* (2000) The putative proteinase maturation protein A of *Streptococcus pneumoniae* is a conserved surface protein with potential to elicit protective immune responses. *Infect Immun* **68**: 4180–4188.
- Peiser, L., Gough, P.J., Kodama, T. and Gordon, S. (2000) Macrophage class A scavenger receptor-mediated phagocytosis of *Escherichia coli*: role of cell heterogeneity, microbial strain, and culture conditions *in vitro*. *Infect Immun* 68: 1953–1963.
- Peiser, L., Makepeace, K., Plüddemann, A. *et al.* (2006) Identification of *Neisseria meningitidis* nonlipopolysaccharide ligands for class A macrophage scavenger receptor by using a novel assay. *Infect Immun* 74: 5191–5199.
- Perego, M., Higgins, C.F., Pearce, S.R., Gallagher, M.P. and Hoch, J.A. (1991) The oligopeptide transport system of *Bacillus subtilis* plays a role in the initiation of sporulation. *Mol Microbiol* **5**: 173–185.
- Petersen, H.J., Keane, C., Jenkinson, H.F. *et al.* (2010) Human platelets recognize a novel surface protein, PadA, on *Streptococcus gordonii* through a unique interaction involving fibrinogen receptor GPIIbIIIa. *Infect Immun* **78**: 413–422.
- Pinheiro da Silva, F., Aloulou, M., Skurnik, D. *et al.* (2007) CD16 promotes *Escherichia coli* sepsis through an FcR γ inhibitory pathway that prevents phagocytosis and facilitates inflammation. *Nat Med* **13**: 1368–1374.
- Plüddemann, A., Hoe, J.C., Makepeace, K., Moxon, E.R. and Gordon, S. (2009) The macrophage scavenger receptor A is host-protective in experimental meningococcal septicaemia. *PLoS Pathog* **5**: e1000297.
- Qi, H.Y., Sankaran, K., Gan, K. and Wu, H.C. (1995) Structure–function relationship of bacterial prolipoprotein diacylglyceryl transferase: functionally significant conserved regions. *J Bacteriol* **177**: 6820–6824.
- Russell, R.R., Aduse-Opoku, J., Sutcliffe, I.C., Tao, L. and Ferretti, J.J. (1992) A binding protein-dependent transport system in *Streptococcus mutans* responsible for

multiple sugar metabolism. *J Biol Chem* **267**: 4631–4637.

- Sankaran, K. and Wu, H.C. (1994) Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. *J Biol Chem* 269: 19701–19706.
- Scheld, W.M. and Sande, M.A. (1995) Endocarditis and intravascular infections In: Mandell, G.L, Bennett, J.E and Dolin, R eds *Principles and Practice of Infectious Diseases*. New York: Churchill Livingstone Inc, pp. 740–783.
- Shibata, K., Hasebe, A., Sasaki, T. and Watanabe, T. (1997) *Mycoplasma salivarium* induces interleukin-6 and interleukin-8 in human gingival fibroblasts. *FEMS Immunol Med Microbiol* **19**: 275–283.
- Stoll, H., Dengjel, J., Nerz, C. and Gotz, F. (2005) Staphylococcus aureus deficient in lipidation of prelipoproteins is attenuated in growth and immune activation. Infect Immun 73: 2411–2423.
- Sugai, M. and Wu, H.C. (1992) Export of the outer membrane lipoprotein is defective in *secD*, *secE*, and *secF* mutants of *Escherichia coli*. *J Bacteriol* **174**: 2511–2516.
- Sutcliffe, I.C. and Russell, R.R. (1995) Lipoproteins of gram-positive bacteria. *J Bacteriol* **177**: 1123–1128.

- Takahashi, Y., Takashima, E., Shimazu, K., Yagishita, H., Aoba, T. and Konishi, K. (2006) Contribution of sialic acid-binding adhesin to pathogenesis of experimental endocarditis caused by *Streptococcus gordonii* DL1. *Infect Immun* **74**: 740–743.
- Thelen, T., Hao, Y., Medeiros, A.I. *et al.* (2010) The class A scavenger receptor, macrophage receptor with collagenous structure, is the major phagocytic receptor for *Clostridium sordellii* expressed by human decidual macrophages. *J Immunol* **185**: 4328–4335.
- Tjalsma, H., Kontinen, V.P., Pragai, Z. *et al.* (1999) The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium *Bacillus subtilis*. Signal peptidase ii is required for the efficient secretion of α -amylase, a non-lipoprotein. *J Biol Chem* **274**: 1698–1707.
- Tokunaga, M., Loranger, J.M. and Wu, H.C. (1984) Prolipoprotein modification and processing enzymes in *Escherichia coli. J Biol Chem* **259**: 3825–3830.
- Xiong, Y.Q., Bensing, B.A., Bayer, A.S., Chambers, H.F. and Sullam, P.M. (2008) Role of the serine-rich surface glycoprotein GspB of *Streptococcus gordonii* in the pathogenesis of infective endocarditis. *Microb Pathog* **45**: 297–301.

Copyright of Molecular Oral Microbiology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.