
REVIEW

Microbial interactions in building of communities
C.J. Wright1*, L.H. Burns1*, A.A. Jack2, C.R. Back2, L.C. Dutton2, A.H. Nobbs2, R.J. Lamont1 and
H.F. Jenkinson2

1 Department of Oral Health and Systemic Disease, University of Louisville, Louisville, KY, USA
2 School of Oral and Dental Sciences, University of Bristol, Bristol, UK

Correspondence: Richard J. Lamont, Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street,
Louisville, KY 40202, USA Tel.: +1 502 852 2112; fax: +1 502 852 6394; E-mail: rich.lamont@louisville.edu or Howard F. Jenkinson, School

of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK Tel.: +44 117 342 4423; fax: +44 117 342 4313;
E-mail: howard.jenkinson@bristol.ac.uk
*These authors contributed equally.

Keywords: biofilm; Candida; phosphorylation; Porphyromonas; signaling; Streptococcus
Accepted 31 October 2012
DOI: 10.1111/omi.12012

SUMMARY

Establishment of a community is considered to
be essential for microbial growth and survival in
the human oral cavity. Biofilm communities have
increased resilience to physical forces, antimicro-
bial agents and nutritional variations. Specific
cell-to-cell adherence processes, mediated by
adhesin-receptor pairings on respective microbial
surfaces, are able to direct community develop-
ment. These interactions co-localize species in
mutually beneficial relationships, such as strepto-
cocci, veillonellae, Porphyromonas gingivalis and
Candida albicans. In transition from the plank-
tonic mode of growth to a biofilm community,
microorganisms undergo major transcriptional
and proteomic changes. These occur in response
to sensing of diffusible signals, such as autoin-
ducer molecules, and to contact with host tissues
or other microbial cells. Underpinning many of
these processes are intracellular phosphorylation
events that regulate a large number of microbial
interactions relevant to community formation and
development.

INTRODUCTION

In the natural world, microorganisms are mostly orga-
nized into communities, and these in turn are found

assembled upon abiotic or living substrates as bio-
films. A typical biofilm forms at an interface of two
phases and comprises microbial cells enclosed within
a matrix consisting of polysaccharides, proteins,
nucleic acid and lipids (Flemming & Wingender,
2010), derived from microbe and environmental
sources. Mono-species biofilm formation often pro-
ceeds through distinct developmental stages, as
exemplified by Pseudomonas aeruginosa (Sauer
et al., 2002) and by Candida albicans (Chandra et al.,
2001). The process is initiated through low-affinity
attachment of planktonic cells to a substrate, followed
by high-affinity adhesion mediated by specific recep-
tors. Microcolonies develop upon growth and division
of attached cells, sometimes referred to as a linking
film. Subsequently, recruitment of planktonic cells
(from the fluid phase) leads to further development of
the community. Moreover, recruitment of heterotypic
bacterial species, and initial adhesion by multiple spe-
cies in close proximity, leads to the formation of multi-
species (polymicrobial) communities; this represents
the most common situation in nature. The integrity of
the biofilm community is maintained by intermicrobial
adhesion, cell signaling by means of cell-to-cell con-
tact, metabolic communication, and quorum sensing
(Swift et al., 2001; Blango & Mulvey, 2009).
The advantages for microorganisms growing in

biofilm communities over remaining in planktonic
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conditions are numerous. The inherent matrix of the
biofilm, such as extracellular polymeric substances,
and the presence of persister cells surviving at low
metabolic rates, contribute to the widely described
phenomenon of reduced sensitivity to antimicrobial
agents (Hoyle & Costerton, 1991). Biofilms are also
more resilient to mechanical removal and to killing by
the host immune system (Leid et al., 2005). More
recently, extracellular DNA has been shown to play
an important structural role in stabilizing biofilms
(Barnes et al., 2012). In addition, this extracellular
DNA may be a source for potential transfer of antibi-
otic resistance or virulence genes between species
within the communities (Roberts & Mullany, 2010).

GENERAL CHARACTERISTICS OF ORAL
BIOFILMS

The organization of oral microorganisms into dental
plaque biofilms plays an essential role in their survival
(Jakubovics & Kolenbrander, 2010). The microorgan-
isms are continually subjected to environmental chal-
lenges in the oral cavity including variations in
oxygen and nutrient availability, pH fluctuations and
the antimicrobial properties of saliva (Abiko & Saitoh,
2007). Microorganisms that fail to attach to host sur-
faces, or to adhered antecedent organisms, are
unable to participate in community development and
are subjected to eventual displacement through the
flow of saliva and other mechanical shearing forces
(Scannapieco, 1994).
Oral bacteria bind to accessible host or bacterial

surfaces and form complex communities in an orderly
fashion. Mature dental plaque on teeth contains about
109 bacteria per gram and up to c.200 microbial spe-
cies or phylotypes (Dewhirst et al., 2010). Certain
species initiate community formation by interacting
directly with the salivary pellicle that is deposited on
newly available tooth surfaces. Notable pioneer
organisms include many species of oral streptococci
(Nyvad & Kilian, 1990), Actinomyces spp., Granulica-
tella adiacens, Abiotrophia defectiva, Gemella spp.
and Rothia (Jenkinson, 2011). These early colonizers
are all components of the natural microbiota (Aas
et al., 2005), and few are known to be directly
responsible for the development of a diseased state.
However, early colonizers such as streptococci
(Palmer et al., 2001) can alter the pathogenic poten-
tial of the oral biofilm through both their influence on

biofilm community development, and by elevating the
pathogenic potential of other bacteria (Whitmore &
Lamont, 2011).

Streptococcus adhesion molecules

Streptococci are facultatively anaerobic and adhere to
an array of salivary molecules including mucins,
proline-rich proteins, statherin, salivary agglutinin
(gp-340) and a-amylase (Nobbs et al., 2009). They
also bind a wide variety of oral microorganisms, lead-
ing to the development of complex microbial networks
that stabilize communities. Accordingly, streptococci
express a diversity of cell surface molecules that
enable adherence to host or bacterial receptors. For
example, long thread-like structures termed pili are
produced by Streptococcus sanguinis, and by other
Streptococcus species, and are composed of poly-
mers of three different protein subunits (PilA, PilB,
PilC). These promote attachment to host receptors
(Okahashi et al., 2010) and in Streptococcus pneu-
moniae are required for full virulence (Barocchi et al.,
2006). Pili and many other surface proteins are found
covalently linked to the cell wall peptidoglycan
through their C-terminal anchorage sequences (Nob-
bs et al., 2009). Other cell-wall-anchored polypeptides
identified in oral streptococci functioning as adhesins
include CshA (and CshB), which forms surface fibrils
that interact with fibronectin and other oral microbes
(Holmes et al., 1996; McNab et al., 1999); Hsa (and
GspB), which interacts with salivary pellicle, epithelial
cells and blood platelets (Kerrigan et al., 2007);
PadA, which interacts with blood platelets (Petersen
et al., 2010) and salivary pellicle components; Fap1,
which binds salivary pellicle and mediates biofilm for-
mation (Ramboarina et al., 2010); BapA1, which rep-
resents a new family of streptococcal adhesins
involved in biofilm formation (Liang et al., 2011);
AbpA, which binds a-amylase (Nikitkova et al., 2012);
and glucan-binding proteins (GbpB, GbpC) that pro-
mote adhesion of bacteria to polysaccharide matrix
(Mattos-Graner et al., 2006; Biswas et al., 2007).
Genomic sequencing has revealed that some strepto-
coccal strains may carry up to 30 or more genes
encoding proteins with predicted cell-wall anchorage
(Nobbs et al., 2009). Therefore it is likely that in
future more functional adhesins will be characterized
that play roles in streptococcus colonization and
biofilm development.
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Antigen I/II (AgI/II) family protein adhesins are pro-
duced by most oral streptococci. The sequences and
structures are well-conserved, but they have a
diverse range of functions in mediating adhesion to
host surfaces, and co-aggregation with other oral
microorganisms (Brady et al., 2010). The AgI/II pro-
tein expressed by Streptococcus mutans (variously
designated SpaP, Pac or AgB) is responsible for
adhesion of bacteria to salivary pellicle. Streptococ-
cus gordonii produces two AgI/II family proteins
termed SspA (172 kDa) and SspB (164 kDa). These
polypeptides mediate co-aggregation of streptococci
with Actinomyces oris (Egland et al., 2001) but with
strain specificities (Jakubovics et al., 2005). As dis-
cussed further below, SspB also interacts directly with
Porphyromonas gingivalis through a C-terminal region
designated BAR that is recognized by the shorter
fimbriae on the surface of P. gingivalis (Daep et al.,
2008).

Microbial interactions between earlier and later
colonizers

Streptococci and other precursor organisms provide
unique receptor sites for later, more pathogenic colo-
nizers such as Fusobacterium nucleatum (He et al.,
2012), Tannerella forsythia, Treponema denticola and
P. gingivalis (Fig. 1) (Kuboniwa & Lamont, 2010;

Perisasamy & Kolenbrander, 2010), which are closely
associated with the development of periodontitis (Haf-
fajee & Socransky, 1994; van Winkelhoff et al.,
2002). Adherence of P. gingivalis to antecedent bac-
teria promotes initial colonization, and ultimately facili-
tates periodontal destruction (Slots & Gibbons, 1978).
A well understood interspecies interaction is between
P. gingivalis and the oral commensal S. gordonii.
This occurs through two sets of adhesin-receptor
pairs (Fig. 2). Porphyromonas gingivalis cells display
preferential binding to oral surfaces coated with cer-
tain streptococci, such as S. gordonii and other mem-
bers of the oralis group (Lamont et al., 1992). It is
likely that this interaction begins primarily on the
supragingival tooth surface (Ximenez-Fyvie et al., 2000;
Mayanagi et al., 2004; Haffajee et al., 2008). From
here, P. gingivalis may spread laterally to the subgin-
gival region via an increase in biomass or by cell dis-
persal as the result of active cellular release or
passive mechanical shearing of the supragingival bio-
film. Porphyromonas gingivalis, and some other sec-
ondary colonizers such as F. nucleatum can also
provide bridging functions by expressing multiple
adhesins that bind other later colonizers (Kolenbran-
der et al., 2002). Both attachment-based and physio-
logical interactions between late colonizers and
compatible precursor organisms can promote
progression of the plaque biofilm towards a more

Figure 1 Bacterial cell-to-cell interactions in the dental plaque biofilm, with examples of synergy and mutualism. Lines linking the microorgan-
isms represent adhesive interactions. Aa = Aggregatibacter actinomycetemcomitans.
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pathogenic state (Kuboniwa & Lamont, 2010;
Whitmore & Lamont, 2011).
Interspecies recognition and co-adhesion contribute

to community formation and to the success of the
participating bacteria. Bacterial growth within a com-
munity can bring metabolic advantages and access to
nutrients that would be unavailable to planktonic
organisms. As certain species flourish within the com-
munity they release metabolites that can be used by
other community inhabitants. In such a heterotypic
biofilm, bacteria will often co-localize with other con-
stituents that are metabolically compatible (Jenkinson
& Lamont, 2005). This metabolic synergy within the
community can allow the development of a more
complex microbiota. One example of metabolic syn-
ergy occurs between T. denticola and P. gingivalis.
When grown in a dual species biofilm, these organ-
isms produce a significantly larger biomass than the
total of the individual monospecies biofilms (Grenier,
1992). Porphyromonas gingivalis produces isobutyric
acid, which stimulates growth of T. denticola,
whereas T. denticola produces succinic acid that
enhances growth of P. gingivalis (Fig. 1). The chymo-
trypsin-like proteinase produced by T. denticola also
stimulates formation of a dual species biofilm with
P. gingivalis (Cogoni et al., 2012). The co-operation
of P. gingivalis with other oral species such as
F. nucleatum has also been demonstrated. The ability

of some F. nucleatum strains to tolerate higher oxy-
gen concentrations than P. gingivalis means that
F. nucleatum facilitates the generation of reduced
oxygen conditions that promote growth and survival
of P. gingivalis (Bradshaw et al., 1998; Diaz et al.,
2002). This modification of the microenvironment by
F. nucleatum may allow the growth of other strictly
anaerobic oral species (Kolenbrander et al., 1995).
Fusobacterium nucleatum can also elevate the pH of
its environment through the generation of ammonia,
hence neutralizing acid produced by fermenting
microorganisms and creating a more favorable envi-
ronment for P. gingivalis and other acid-sensitive
organisms (Takahashi, 2003).
Bacterial interactions are often established by pair-

ings of adhesin (protein) and receptor (saccharide)
components found on the surfaces of the associated
bacteria (Kolenbrander et al., 2006). An example of
such an interaction involves the type 2 fimbriae on the
surface of Actinomyces oris (naeslundii) that recognize
a (GalNAcb1? 3Gal) linkage present within cell wall
polysaccharides on Streptococcus oralis, so allowing
the cells to co-aggregate (Palmer et al., 2003; Yoshida
et al., 2006). In the case of interaction of P. gingivalis
with F. nucleatum (Rosen & Sela, 2006), the latter
expresses a lectin adhesin that specifically recognizes
galactose, which is present in the capsule and lipopoly-
saccharide of P. gingivalis. Similar galactose-contain-

Figure 2 The interaction of Porphyromonas gingivalis with Streptococcus gordonii depends upon two sets of adhesin-receptor pairs. The
major and minor fimbriae of P. gingivalis bind glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and SspA/B on the surface of S. gordo-

nii, respectively. The domains of SspA/B that interact with the minor fimbriae subunit, Mfa1, are highlighted in the yellow ovals. These
domains reside within the SspA/B adherence region (BAR) and are required to maintain the contacts between the two species in the oral
cavity.

86 © 2012 John Wiley & Sons A/S
Molecular Oral Microbiology 28 (2013) 83–101

Microbial interactions in building of communities C.J. Wright et al.



ing receptors are found on Aggregatibacter actinomy-
cetemcomitans (Rupani et al., 2008) and T. denticola
(Rosen et al., 2008), in the form of the serotype-
specific O-polysaccharide and outer membrane
carbohydrate groups, respectively. Hence, strains of
F. nucleatum actively bind these different organisms,
both earlier and later colonizers. Also, T. denticola and
Tannerella forsythia each express leucine-rich repeat
proteins that mediate mutual attachment and facilitate
binding to F. nucleatum, further adding to the develop-
ing bacterial network (Ikegami et al., 2004; Sharma
et al., 2005) (Fig. 1).

METABOLIC NETWORKS

Many bacteria rely on metabolic cooperation provided
by close proximity of cells to grow and become incor-
porated within oral microbial communities. For exam-
ple, Veillonella species are gram-negative, anaerobic
cocci, which occur in plaque in high abundance
(Bik et al., 2010) and are part of the pioneer oral
community after birth (Cephas et al., 2011). Growth
of streptococci leads to the formation of lactic acid,
which is a favored substrate of Veillonella atypica.
This in turn accelerates the glycolysis rate in strepto-
cocci by removing the end-product (lactate) inhibition
(Fig. 1).
When S. gordonii and V. atypica are grown in

co-culture a veillonella diffusible signal leads to up-
regulation of the S. gordonii amylase gene, amyB.
Increased amylase activity on a starch substrate pro-
duces more fermentable glucose, generating further
lactic acid and more favorauble conditions for V. aty-
pica (Egland et al., 2004). On the other hand,
S. gordonii appears to benefit from interaction with
A. naeslundii (Egland et al., 2001). When co-cultured,
a number of genes involved in arginine biosynthesis
are differentially expressed in S. gordonii (Jakubovics
et al., 2008) potentially increasing the efficiency of argi-
nine biosynthesis. An observation that highlights the
benefits of interspecies cooperation is in the degrada-
tion of salivary mucins. Individually, Streptococcus
species do not necessarily produce all of the required
enzymes for mucin hydrolysis, but cooperatively they
are able to more efficiently utilize the mucin oligosac-
charides for growth (Byers et al., 1999).
The examples above begin to paint a picture of a

web of metabolic exchanges that occur in the oral
cavity (Jenkinson, 2011). But more simply, coloniza-

tion by early pioneering colonizers, e.g. streptococci,
can enhance the growth and virulence of potentially
pathogenic bacteria such as P. gingivalis and T. den-
ticola. This has led to the mitis-group streptococci
e.g. S. gordonii, S. oralis etc. being termed accessory
pathogens in the oral cavity (Whitmore & Lamont,
2011).

Antagonism

Microorganisms are not always greeted into a com-
munity with open arms. A number of bacterial species
have evolved specific mechanisms to inhibit the
growth and attachment of competing organisms.
Hydrogen peroxide produced by some of the oral
streptococci provides one mechanism of bacterial
antagonism (Holmberg & Hallander, 1973). However,
interspecies interactions are often multi-threaded.
Kreth et al. (2005) observed two separate mecha-
nisms by which S. sanguinis and S. mutans are
mutually antagonistic, based upon hydrogen peroxide
(H2O2) production by S. sanguinis and bacteriocin
production by S. mutans. When grown simulta-
neously, both species proliferate; however, prior
establishment of one of the species prevents the
other from occupying the same niche (Kreth et al.,
2005). Further work demonstrated that S. gordonii
also inhibits the growth of S. mutans, and that this is
promoted under aerobic conditions, which led to ele-
vated H2O2 levels. Interestingly, H2O2 production by
bacteria may have also co-evolved to act as a signal-
ing molecule for the fungus Candida albicans to
undergo filamentation (Srinivasa et al., 2012). More
aerobic conditions appear to stimulate the production
of bacteriocins by S. mutans, through activation of
the gram-positive competence-stimulating peptide
signaling system encoded by the com genes
(Kreth et al., 2008). As covered in more detail below,
S. mutans expresses a eukaryotic serine/threonine
type kinase (discussed further below), which contrib-
utes to resistance to peroxide (Zhu & Kreth, 2010).
This thrust and counter-thrust, driven by co-evolution,
continues through strategies to subvert the production
of antagonistic elements. An example of this is a
gene sgc in S. gordonii encoding a protease capable
of interfering with bacteriocin production in S. mutans
(Wang & Kuramitsu, 2005).
Certain oral streptococci have been shown to have a

negative impact on biofilm formation by P. gingivalis.
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Contact with the later colonizer Streptococcus cristatus
has been shown to down-regulate the expression of
fimA, which encodes the major fimbrial adhesin of
P. gingivalis, and so prevent P. gingivalis accumula-
tion on S. cristatus-rich substrata (Wang et al., 2009).
Arginine deaminase (ArcA) in S. cristatus provides the
communication signal responsible for the down-regula-
tion of fimA in P. gingivalis, although enzymatic
function of ArcA is not essential for signaling activity
(Xie et al., 2007). Streptococcus intermedius also
produces arginine deaminase that can repress the
expression of both FimA and Mfa1 (minor fimbria) in
P. gingivalis (Christopher et al., 2010). Although
S. gordonii produces ArcA, cis catabolite response
elements function to repress expression in S. gordonii
in comparison to S. cristatus (Lin et al., 2008). This
antagonistic interaction has been shown to have bio-
logical consequences. In a mouse model colonization
of the oral cavity by ArcA-expressing S. cristatus fol-
lowed by P. gingivalis infection reduces the levels of
P. gingivalis colonization and subsequent bone loss
(Xie et al., 2012).
Detachment of microorganisms from the biofilm

may occur as a consequence of antagonism or
exclusion. Release of cells from the biofilm is an
important mechanism for dispersal, and may be pas-
sive or active. The main mechanism is shear force,
such as salivary flow or external applications such
as tooth-brushing. However, some microbial species
are known to actively disperse from the biofilm.
Following Ps. aeruginosa biofilm formation, cells on
the outer layer remain as a stationary biofilm pheno-
type, while cells on the inside of the biofilm become
motile (planktonic phenotype) and can swim out of
the biofilm, leaving a hollow mound (Sauer et al.,
2002). The dental pathogen A. actinomycetemcomi-
tans is not a motile species, but does have the
ability to become released from the biofilm, using
dispersin B, a biofilm-releasing b-hexosaminidase
(Manuel et al., 2007). Salivary flow then seeds other
areas of the mouth with the released A. actinomyce-
temcomitans cells (Kaplan & Fine, 2002). Candida
albicans biofilms are composed mainly of a network
of hyphae (filaments) that provide the biofilm struc-
ture. A transcriptional regulator Nrg1p blocks yeast
to hyphae transition and controls dispersion of yeast
morphology cells from the biofilm (Uppuluri et al.,
2010).

INTERACTIONS OF STREPTOCOCCI WITH
PORPHYROMONAS AND CANDIDA

The AgI/II adhesins of oral streptococci

The streptococcal AgI/II family of proteins are multi-
functional adhesins with the ability to bind a variety of
host components such as collagen, laminin and sali-
vary substrates, as well as other microorganisms
(Brady et al., 2010). AgI/II family protein functions
vary according to streptococcal species and strains in
which they are expressed. The production of these
proteins is affected by environmental factors including
salivary proteins, variations in pH, osmolarity and
temperature. SspA and SspB expression levels
increase under elevated temperature and acidic pH,
whereas SspB expression is reduced under lower
NaCl concentration (El-Sabaeny et al., 2000). Also,
SspA levels are generally higher than those of SspB,
and the SspA polypeptide positively regulates sspB
by binding its promoter region (El-Sabaeny et al.,
2001). One major receptor for AgI/II is salivary glyco-
protein gp340, also found in most if not all mucosal
secretions. This protein participates in innate immu-
nity by promoting microbial cell agglutination and
clearance (Prakobphol et al., 2000). However, when
gp340 is adsorbed onto an oral cavity surface it pro-
vides sites for streptococcal binding (Lamont et al.,
1991). The AgI/II proteins play a critical role in the
association of P. gingivalis with S. gordonii as
described in more detail below.
The SspA and SspB proteins also appear to mediate

interactions of S. gordonii with hyphal filaments of
C. albicans, so promoting co-colonization by these
microorganisms (Bamford et al., 2009) (Fig. 1). The
receptor on C. albicans that interacts with SspB is a
protein expressed on the hyphal cell surface, desig-
nated Als3 (Silverman et al., 2010). This is one of a
group of proteins expressed by the agglutinin-like
sequence (ALS) family of genes (Hoyer et al., 1995).
They encode surface glycoprotein adhesins involved
in host–pathogen interactions and other adhesive func-
tions (Hoyer et al., 2008). There are eight Als proteins
(Als1p–Als8p), but the largest decrease in C. albicans
adhesion is observed by deletion of both als3 alleles
(C. albicans is generally diploid) (Zhao et al., 2004).
Als3p is hypha-specific (Murciano et al., 2012) and is
in all probability involved in early establishment of
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biofilms in addition to interacting with oral streptococci
(Silverman et al., 2010).

Porphyromonas gingivalis fimbriae

Numerous peritrichous fimbriae protrude from the cel-
lular envelope of most strains of P. gingivalis (Listgar-
ten & Lai, 1979; Handley & Tipler, 1986). Binding of
P. gingivalis to sites in the oral cavity and to other
bacteria is dependent, at least in part, upon these
fimbrial structures (Slots & Gibbons, 1978), which are
of two kinds. The major fimbriae are longer, with
lengths 0.3–1.6 lm and width approximately 5 nm
(Yoshimura et al., 1984), whereas the minor fimbriae
are 80–120 nm in length and 3.5–6.5 nm in diameter
(Park et al., 2005). The major fimbriae bind to salivary
proteins and glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) found on the surface of S. oralis,
S. gordonii and other streptococci (Maeda et al.,
2004b). The primary unit of the major fimbriae is fim-
brillin (FimA). There are at least six different variants
of fimA among strains of P. gingivalis, and binding
differences among these fimbrillin types could effect
the likelihood of periodontal disease development
(Amano et al., 2004). The fimA locus is flanked by
genes that are involved in transcriptional regulation or
encode proteins that contribute to the structure of the
fully mature fimbriae. The two genes upstream of
fimA are involved in regulation via a response regula-
tor, FimR (Nishikawa et al., 2004), part of the FimS/
FimR two-component signal transduction system that
governs transcriptional levels of fimA (Hayashi et al.,
2000). Environmental cues detected by P. gingivalis
that influence fimA expression include changes in
temperature and hemin concentration (Amano et al.,
1994; Xie et al., 1997). The arginine- and lysine-spe-
cific gingipains produced by P. gingivalis also regu-
late the amount of FimA on the bacterial surface,
potentially affecting adhesion and colonization (Xie
et al., 2000). The genes downstream of fimA encode
the products FimC–FimE, which are minor compo-
nents of the mature fimbriae. FimE is responsible for
assembly of FimC and FimD proteins onto the fimbrial
fiber and for maintaining a stable attachment to the
bacterial surface (Nishiyama et al., 2007). The
absence of any of these three accessory proteins
manifests as a significant reduction of FimA binding
to GAPDH, which in turn affects initial P. gingivalis
binding to oral streptococci (Maeda et al., 2004a).

The minor fimbriae bind to components of the
streptococcal surface. The primary subunit of the
minor fimbriae, Mfa1 (67 kDa) has a role in inflamma-
tory processes and is involved in induction of several
cytokines such as interleukin-1a, interleukin-1b and
tumor necrosis factor-a in peritoneal macrophages
(Lin et al., 2006). Additional genes encode accessory
proteins that associate or co-operate with the
main protein subunit. Downstream of mfa1 is a
co-transcribed gene encoding the protein Mfa2. This
protein is known to have a role in the regulation of
the length of the minor fimbriae and is required for
their attachment to the cell envelope (Hasegawa
et al., 2009). P. gingivalis cells that do not express
Mfa2, but which still produce Mfa1, have abnormally
lengthened minor fimbrial extensions and these
fimbriae are only weakly bound to the cells. There
are three additional, less characterized products
encoded by the genes situated downstream of mfa2,
which are predicted to be accessory proteins that
interact directly with the polymerized Mfa1 because
they are co-purified with the filaments (Hasegawa
et al., 2009).

Interaction of SspA and SspB with Mfa1

Porphyromonas gingivalis binding to S. gordonii SspA
and SspB proteins is important for the development
of dual species biofilm communities (Lamont et al.,
2002). P. gingivalis does not interact with all AgI/II
family members, despite conservation in primary
amino acid sequences and secondary structure
(Brady et al., 2010). For example, P. gingivalis does
not recognize SpaP of S. mutans (Brooks et al.,
1997). The precise region of SspA/B involved in bind-
ing P. gingivalis was determined by examining a ser-
ies of truncated SspB polypeptides and chimeric
proteins consisting of portions of SspB and SpaP.
The adherence characteristics of the chimeric
proteins pointed toward a region (amino acid residues
1167–1250 in SspB) as being necessary for P. gingi-
valis binding. This region was designated BAR (SspB
adherence region) and shown to have a significantly
different secondary structure from the corresponding
region in SpaP (Forsgren et al., 2010). A critical
region of 26 amino acid residues within BAR contains
the necessary motifs recognized by Mfa and a
synthetic BAR peptide can adhere to P. gingivalis,
whereas the corresponding SpaP peptide does not.
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It was also shown that BAR peptides with specific
mutations confer conformational changes that ablate
binding to P. gingivalis cells (Demuth et al., 2001).
The NITVK motif within BAR helps to define the

binding specificity for AgI/II protein members as NITVK
is only found in the AgI/II proteins of the oralis group of
streptococci, which includes S. gordonii, S. oralis and
S. sanguinis. The AgI/II proteins expressed by other
streptococci have Gly in place of Asn1182, Pro in place
of Val1185, or potentially both of these substitutions.
Both Gly and Pro are known to terminate a-helixes in
proteins, and these particular substitutions inhibit
P. gingivalis binding. A VQDLL motif upstream of NIT-
VK is also conserved in the oralis group and resembles
a nuclear receptor box domain of eukaryotic proteins
that is involved in protein–protein interactions (Daep
et al., 2008). This motif is also flanked by lysine resi-
dues, and the positive charge of these residues could
participate in electrostatic interactions that stabilize the
complex of SspB with Mfa1. The VQDLL motif is in an
a-helical region while NITVK is in a predicted b sheet,
and this region extends outside the SspB core, making
it accessible to Mfa1 (Forsgren et al., 2010). The
importance of the BAR region for co-colonization with
P. gingivalis has been established in a mouse model.
Peptides derived from BAR inhibited P. gingivalis colo-
nization and disease in mice pre-infected with
S. gordonii (Daep et al., 2011). The efficacy and low
toxicity to the host of BAR derivatives suggest that they
could be developed as a therapeutic or prophylactic
agent in periodontal disease (Daep et al., 2008).

GENE REGULATION WITH THE COMMUNITY
ENVIRONMENT

Transcriptional studies on the differences between
the planktonic state and the sessile (biofilm) state
have highlighted the fundamental shift that an organ-
ism undertakes as it becomes part of the biofilm com-
munity (O’Toole & Kolter, 1998). A dramatic response
to monospecies biofilm formation is exhibited by
P. gingivalis, with 18% of the genome differentially
regulated compared with planktonic organisms. Many
of the regulated genes are associated with cell enve-
lope biogenesis, DNA replication and metabolism,
supporting the concept that cells in the transition from
planktonic to biofilm state exhibit a lower rate of
growth and cell metabolism (Lo et al., 2009). Genes
involved in adhesion and early biofilm formation, fimA

and mfa1, were upregulated in early biofilms,
whereas fimA was downregulated in the later stages
(Yamamoto et al., 2011). In a community with
S. gordonii, 33 P. gingivalis genes showed
upregulation or downregulation by microarray analysis
(Simionato et al., 2006), one of which was ltp1,
encoding a tyrosine phosphatase.
Prevailing environmental conditions, influenced by

diet, can have an important role in regulating gene
activity within the oral microbial community (Bradshaw
et al., 1989; Percival et al., 1991). Different sugars or
complex carbohydrates influence the expression of
specific metabolic pathways (Klein et al., 2010) and
impact on mechanisms controlling cell integrity and
secretion of extracellular biofilm matrix. Carbohydrate
metabolism is integrated with cell–cell signaling sys-
tems, such as the autoinducer-2 (LuxS/AI-2, see
below) pathway. A LuxS-deficient strain of S. mutans
was affected in expression of genes involved in car-
bohydrate metabolism, DNA repair, amino acid and
protein synthesis and stress tolerance (Wen et al.,
2011). A phenotypic outcome of loss of LuxS is a
fundamental difference in biofilm architecture.
The correlation between mRNA levels and protein

amounts is not always strong (Nie et al., 2006), so it
is also important to understand community adaptation
at the proteome level. In Tannerella forsythia, 44 pro-
teins were found to be altered between planktonic
and biofilm cultures (Pham et al., 2010). Many of
these proteins were associated with the outer mem-
brane and transport systems, and effects were
observed in amount of S-layer produced by the cells.
Oxidative stress response proteins were up-regulated
and the resulting biofilm cells were 10-fold to 20-fold
more resistant to oxidative stress compared with their
planktonic counterparts. This could enhance survival
of Tannerella forsythia in the presence of H2O2-
producing streptococci (Pham et al., 2010).
Porphyromonas gingivalis displays differential

abundance of 47 proteins when grown in planktonic
versus biofilm conditions (Ang et al., 2008). A high
percentage of these changes was associated with the
cell envelope. Increased presence of proteins
associated with hemin transport and metabolism indi-
cated that P. gingivalis cells were entering a starved
state (Ang et al., 2008). In a three-species community
with S. gordonii and F. nucleatum, levels of P. gingi-
valis proteins involved in cell envelope structure and
DNA repair were decreased (Kuboniwa et al., 2009b),
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indicating that the multi-species community environ-
ment was less stressful to P. gingivalis.

Signaling within a biofilm setting

Communication is an important part of any society,
including bacterial communities, and intraspecies and
interspecies communication facilitates community
development. The first example of bacterial signaling
was described in the marine organism Vibrio fischeri,
where a diffusible signal N-acyl homoserine lactone
(AHL) was responsible for the induction of biolumi-
nescence (Nealson & Hastings, 1979). The same
AHL molecule is used by both Ps. aeruginosa and
Burkholderia cepacia in co-ordination of virulence
genes and biofilm formation in cystic fibrosis (Eberl &
Tummler, 2004). Homoserine lactones (HSLs) such
as AHL are not commonly used by oral bacterial spe-
cies for communication (Kolenbrander et al., 2002);
rather oral bacteria rely on two distinct signaling sys-
tems. The first, restricted to gram-positive organisms
such as the early colonizing streptococci, uses short
peptides termed Competence Signaling Peptides
(CSP) (Suntharalingam & Cvitkovitch, 2005) or other
small peptides (Son et al., 2012). These have been
described in a number of streptococci, including
S. mutans and S. gordonii, where they play a role in
genetic exchange and virulence. The second signal-
ing system involves autoinducer-2 (AI-2), a family of
signaling molecules produced by the action of the
LuxS enzyme on S-ribosyl-homocysteine (SRH), gen-
erating 4,5-dihydroxyl-2,3-pentanedione or DPD,
which breaks down to produce AI-2 (Sun et al.,
2004). AI-2 was originally described in the marine
organism Vibrio harveyi (Bassler et al., 1993) and is
now recognized as a species-independent signal that
is widespread in oral bacteria including P. gingivalis,
A. actinomycetemcomitans and also oral streptococci
such as S. gordonii and S. mutans.
There are a number of studies on the role of AI-2

and community development within the oral cavity.
For example, AI-2 is required for biofilm growth of
A. actinomycetemcomitans (Shao et al., 2007). AI-2
is linked to the two-component system QseBC, which
is induced by AI-2 through uptake of AI-2 into the cell.
This uptake is reliant on two AI-2 receptors, linked to
ABC transporters, termed LsrB and RbsB. Deletion of
either of these elements reduces A. actinomycetem-
comitans-induced alveolar bone resorption in animal

models. Loss of QseC also diminishes biofilm forma-
tion consistent with a role for this system in coloniza-
tion and virulence (Novak et al., 2010) (see Fig. 3).
Other oral species are also dependent on AI-2 signal-
ing for biofilm formation. Actinomyces oris can use
AI-2 produced by S. oralis for biofilm growth and
development. Interestingly, the concentration of signal
is an important factor in dual species biofilm forma-
tion, and at higher concentrations of AI-2 there are
significantly lower levels of biofilm formation (Rickard
et al., 2006). Moreover, the AI-2 concentration in Acti-
nomyces oris–S. oralis biofilms decreases over time,
possibly contributing to the persistence of the dual
species communities (Rickard et al., 2008).
Streptococcus gordonii also exhibits altered

biofilm development in the absence of AI-2, and AI-2 is
required for community development between
S. gordonii and P. gingivalis (McNab et al., 2003).
Interkingdom effects of AI-2 have been seen between
C. albicans and S. gordonii, where a luxS knockout of
S. gordonii is substantially affected in dual-species bio-
film formation with C. albicans (Bamford et al., 2009).
It is suggested that luxS mutation affects the ability of
S. gordonii to promote hyphal growth in C. albicans.
This might occur by suppressing the effects of the quo-
rum-sensing molecule farnesol, which normally inhibits
filamentation (Hornby et al., 2001) (Fig. 4).
A range of signaling molecules have been identified

produced by bacteria that affect C. albicans biofilm for-
mation or morphogenesis. These include lactic acid,
H2O2, CO2 and bacterial peptidoglycan (Xu et al.,
2008), all of which appear to promote filamentation,
whereas HSLs inhibit filamentation (Hall et al., 2011).
By way of return, fatty acids, carboxylic acids and gly-
cans produced by C. albicans are able to promote the
growth of bacteria, while farnesol produced by C. albi-
cans inhibits bacterial biofilm formation (Pammi et al.,
2011). Hence filamentation of C. albicans and mixed-
species biofilm formation are regulated by recognition
of a complex array of self or non-self signaling mole-
cules (Fig. 4).
A number of genes are regulated by LuxS in

S. gordonii including those involved in carbohydrate
synthesis (McNab et al., 2003). The pathways in
P. gingivalis involved in signal transduction, including
AI-2 dependent signaling, following contact with
S. gordonii were identified by Chawla et al. (2010). A
LuxR family orphan transcriptional regulator desig-
nated CdhR was shown to constrain development
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of S. gordonii and P. gingivalis communities. The
community function of this regulator was attributed to
two genes that are under its control. The first is mfa1,
which as mentioned previously encodes the minor

fimbrial antigen in P. gingivalis and is responsible for
primary interactions with AgI/II polypeptides on the
surface of S. gordonii. CdhR was also shown to regu-
late LuxS, which directly affects the amount of AI-2
and so ultimately affects dual species development
(Chawla et al., 2010). CdhR is part of the same
regulatory circuit as the Ltp1 tyrosine phosphatase,
discussed further below.

PHOSPHORYLATION AND BIOFILM COMMUNITY
DEVELOPMENT

The importance of post translational modification on
serine, threonine and tyrosine residues has long been
known in eukaryotic systems, and is gaining increas-
ing significance in bacterial systems. Bacteria and
some plant systems also possess another type of
phosphorylation system based on histidine and
aspartate. Two-component signal transduction sys-
tems comprise a sensory kinase and response regula-
tor and are the most common examples of bacterial
regulatory systems involving phospho-transfer. The
sensor kinase responds to external signals resulting in
the autophosphorylation of a histidine residue. The

Figure 3 Phosphorylation events within a bacterial cell are complex and dynamic. The two-component system in Aggregatibacter actinomyce-
temcomitans is induced by AI-2, with the loss of this two component signal transduction system resulting in diminished biofilm formation.

Tyrosine kinases in gram-negative bacteria such as Wzc in Escherichia coli have been shown to regulate a variety of targets including
DNA-binding proteins, capsule synthesis genes and the heat-shock response. The phosphatase Ltp1 in Porphyromonas gingivalis has been
shown to affect a number of cellular activities including dual-species community formation, extracellular polymeric substance synthesis and
hemin uptake.

Figure 4 Communication circuits between Candida albicans and
oral streptococci. The diagram depicts self or non-self control of the

yeast to hypha transition, with bacterial products variously impacting
on morphogenesis and biofilm formation, and C. albicans products
positively or negatively influencing bacterial growth or biofilm

formation (see text for discussion).

92 © 2012 John Wiley & Sons A/S
Molecular Oral Microbiology 28 (2013) 83–101

Microbial interactions in building of communities C.J. Wright et al.



transfer of the phosphate group to the response
regulator results in the phosphorylation of an aspartate
residue and a downstream effect on gene transcription
(Gao & Stock, 2009). Two-component signal transduc-
tion systems have been shown to be involved in
biofilm development in a number of bacteria (Zhang
et al., 2009; Kolar et al., 2011).

Serine/threonine protein kinases (STPKs)

A number of STPKs now described in bacteria are of
the Hanks-type kinase, and show homology to eukary-
otic kinases. This allows intracellular bacteria to use
STPKs and the corresponding phosphatases to sub-
vert host signal transduction via phosphorylation and
de-phosphorylation of signaling components within the
host (Kobir et al., 2011). As well as having a role in
virulence and host subversion, STPKs have been
implicated in biofilm formation, e.g. PrkC of Bacillus
subtilis (Madec et al., 2002) and Stk in S. epidermidis
(Liu et al., 2011). Streptococcus mutans possesses a
STPK, PknB, and a strain deficient in PknB exhibited
reduced biofilm formation on hydroxyapatite disks,
and an inability to tolerate acid conditions (Hussain
et al., 2006). Further characterization of PknB, and
the corresponding phosphatase PppL, showed that
both enzymes were important for biofilm formation,
cell shape, acid tolerance, genetic transformation and
cariogenicity in a rat model (Banu et al., 2010). PknB
is also involved in controlling bacteriocin production,
possibly through modulating the activity of a two-
component signal transduction system in S. mutans.
Additionally, PknB participates in oxidative stress
tolerance, and a decreased fitness was observed in a
pknB-deficient strain of S. mutans when grown with
S. sanguinis (Zhu & Kreth, 2010). Taken together, the
results indicate that the STPK pnkB in S. mutans
provides an important link in the establishment of an
S. mutans community and persistence within the oral
cavity.

Tyrosine kinases

Over recent years a number of tyrosine kinases and
phosphatases have been described in prokaryotes
leading to the realization that phosphorylation on tyro-
sine is not limited to occurring in eukaryotic systems,
as was once believed. Significant structural differ-
ences are apparent between gram-positive and gram-

negative bacterial tyrosine kinases (BY-kinases). In
gram-negative species, the BY-kinase comprises a
single polypeptide. A short N-terminal region is usu-
ally present within the cytoplasm, followed by a trans-
membrane stretch and a region occupying the
periplasmic space. A second transmembrane stretch
brings the polypeptide back into the cytoplasm where
the C-terminal region contains the enzymatically
active Walker (ATP-binding) domains. In gram-posi-
tive bacteria the kinase domain and transmembrane
regions are encoded by neighboring genes on the
bacterial chromosome (Lee & Jia, 2009). Initially
thought of as purely autophosphorylating peptides,
the discovery of phosphorylation of specific sub-
strates has led to the appreciation that BY-kinases
play a critical role in many aspects of virulence. One
of the first substrates of BY-kinases to be recognized
was a UDP-glucose dehydrogenase in E. coli
(Grangeasse et al., 2003). Phosphorylation of this
substrate increases its activity in generating precur-
sors for polysaccharide synthesis. BY-kinases have
since been shown to play a significant role in the
transport and synthesis of cellular polysaccharide
(Fig. 3), and are therefore likely to impact community
development and biofilm formation. Tyrosine kinase
activity has been found to be important for biofilm for-
mation by Bacillus subtilis (Kiley & Stanley-Wall,
2010); however, the function of tyrosine kinases in
oral bacteria has yet to be investigated.

Tyrosine phosphatases

Tyrosine kinases generally have partner phosphata-
ses, such that reversible phosphorylation of sub-
strates allows for regulation of cellular processes.
Bacterial protein tyrosine phosphatases (PTPs) pos-
sess similar structures to those typically found in
eukaryotes. Bacterial PTPs fall into three classes: the
conventional PTP; dual specificity phosphatase
(DSP); and a low molecular weight (LMW) PTP class.
The LMW-PTP class of phosphatases has been
found to be important in virulence and other physio-
logically important cellular events (Grangeasse et al.,
2007). In gram-positive species, LMW-PTP genes are
found upstream of their corresponding kinases genes,
whereas in gram-negative species the genes are at
distinct locations on the chromosome.
In Ps. aeruginosa, deletion of tpbA encoding a tyro-

sine phosphatase resulted in >100-fold increase in
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biofilm formation over an 8-h period. This dramatic
effect was attributed to an increase in initial attach-
ment levels, a decrease in swimming activity and a
loss of swarming motility (Ueda & Wood, 2009). TpbA
also appeared to constrain pellicle and extracellular
polymeric substances formation. Two potential mech-
anisms account for the observed phenotype. The first
is increased transcription of the pel locus responsible
for production of extracellular polymeric substances.
The second is regulation of cyclic di-GMP, also
shown to contribute to biofilm formation in P. aerugin-
osa (Ueda & Wood, 2009). The tpbA gene is regu-
lated by AHL signaling in Ps. aeruginosa, indicating
cross-talk between quorum sensing and tyrosine
phosphatase activity (Ueda & Wood, 2009). Another
aspect of the functionality of TpbA is the ability to
regulate the amount of extracellular DNA released
from P. aeruginosa cells (Ueda & Wood, 2010).
Extracellular DNA is a major component of the biofilm
matrix and can provide a structural role in biofilm
development (Whitchurch et al., 2002; Martins et al.,
2010).
A tyrosine phosphatase has also been characterized

in P. gingivalis (Maeda et al., 2008). Ltp1, an LMW-
PTP, influences a number of cellular processes and is
a key component of a regulatory pathway that con-
strains heterotypic community development between
P. gingivalis and S. gordonii. Ltp1 activity restricts
extracellular polymeric substance production at the
transcriptional level and also negatively regulates the
expression of luxS. In contrast, Ltp1 through modulat-
ing the activity of the transcriptional regulator CdhR
(see above), positively regulates hmu (hemin uptake
operon), so increasing hemin/iron uptake by the
organism (Fig. 3). Secretion of the RgpA/B gingipain
(proteinase) is reduced in an ltp1 mutant whereas an
increase in the cell-associated Kgp gingipain is
observed (Maeda et al., 2008). It is interesting to note
that deletion of the genes encoding the Kgp and
RgpA/B gingipains markedly alters the mono-species
biofilm phenotype (Kuboniwa et al., 2009a). Hence,
kinase–phosphatase networks have pleiotropic effects
on the formation and stability of oral microbial biofilm
communities.

CONCLUSIONS

Biofilm development and maintenance are essential
factors for microbial survival and growth, both in the

environmental setting and the host. Benefits of the
biofilm lifestyle include reduced sensitivity to mechan-
ical shearing and to the actions of antimicrobial
agents, and enhanced nutritional flexibility. Cells
undergo a multitude of changes in the transition from
planktonic to biofilm mode of growth. These begin
with the sensing of diffusible signals that are secreted
by one set of microbial cells and recognized by oth-
ers. Quorum sensing along with contact-dependent
sensing instigate changes in gene and protein
expression. Specific cell-to-cell adherence as dictated
by adhesin–receptor pairings on respective bacterial
surfaces can also direct community development.
Interbacterial binding helps to optimize co-localization
of species that can coexist in a mutually beneficial
relationship. Underpinning many of these processes
are the intracellular phosphorylation events that
regulate a large number of bacterial cell processes
relevant to community formation and development.
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