Prostaglandin E_2 (PGE₂) downregulates interleukin (IL)-I α -induced IL-6 production via EP_2/EP_4 subtypes of PGE₂ receptors in human periodontal ligament cells

K Noguchi, M Maeda, SMPM Ruwanpura, I Ishikawa

Periodontology, Department of Hard Tissue Engineering, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan

OBJECTIVES: Prostaglandin E_2 (PGE₂) exerts its biological actions via EP receptors, which are divided into four subtypes, EP₁, EP₂, EP₃ and EP₄. In the present study, we examined whether PGE₂ regulated interleukin (IL)-1 α -induced IL-6 production in human periodontal ligament (PDL) cells and if so, which subtypes of PGE₂ receptors were involved.

METHODS: PDL cells were stimulated with vehicle or ILl α in the presence or absence of indomethacin (a cylooxygenase inhibitor), PGE₂ or various EP agonists. IL-6 and PGE₂ levels were measured by enzyme-linked immunosorbent assay. EP receptor mRNA expression was examined by reverse transcription-polymerase chain reaction (RT-PCR).

RESULTS: Indomethacin significantly enhanced IL-1 α induced IL-6 production by PDL cells, although it completely inhibited IL-1 α -induced PGE₂ production. Exogenous PGE₂ significantly suppressed IL-1 α -induced IL-6 production. Butaprost, a selective EP₂ agonist, and ONO-AE1-329, a selective EP₄ agonist, significantly inhibited IL-1 α -induced IL-6 production, although 17-phenyl- ω -trinor PGE₂, an EP₁ agonist, and ONO-AP-324, an EP₃ agonist, did not affect it. RT-PCR analysis showed that EP₂ and EP₄ mRNA was expressed in PDL cells.

CONCLUSIONS: We suggest that PGE_2 downregulates IL-1 α -induced IL-6 production via EP_2/EP_4 receptors in human PDL cells.

Oral Diseases (2005) 11, 157-162

Keywords: EP receptor; prostaglandin E₂; interleukin-6; periodontal ligament cells

Received 13 May 2004; accepted 29 July 2004

Introduction

Periodontal disease is characterized by gingival inflammation and loss of periodontal attachment apparatus, frequently causing tooth loss. Prostaglandins (PGs) including PGE₂ are thought to be involved in the pathogenesis of periodontal disease (Offenbacher *et al*, 1993). It has been demonstrated that non-steroidal antiinflammatory drugs, which inhibit PG synthesis, are effective to prevent periodontal destruction (Williams *et al*, 1989). PGE₂ levels are reportedly enhanced in inflamed human gingiva, compared with normal gingiva (Ohm *et al*, 1984). Furthermore, PGE₂ has been shown to be a potent stimulator of bone resorption (Klein and Raisz, 1970) and to be associated with attachment loss (Offenbacher *et al*, 1984, 1993).

Recent studies have demonstrated that the cellular effects of PGE₂ are mediated by activation of multiple functionally distinct subtypes of PGE₂ receptors, which are classified into EP₁, EP₂, EP₃ and EP₄, based on their ligand binding selectivities and activation mechanisms of signaling pathway (Negishi et al, 1995; Narumiya et al, 1999). EP_1 receptors mediate increase in intracellular calcium levels. EP2 and EP4 receptors activate adenylate cyclases via a cholera toxin-sensitive, stimulatory G protein and elevate intracellular cAMP levels. EP_2 receptors are sensitive to butaprost, an agent that selectively binds PGE₂ receptors, whereas EP₄ receptors are not. Multiple isoforms of EP₃ receptors with different C-terminal tails are generated by alternative mRNA splicing. EP₃ receptor variants mediate several signaling pathways including inhibition and stimulation of adenylate cyclase, activation of phospholipase C and mobilization of intracellular calcium.

Interleukin (IL)-6 is a pleiotropic cytokine produced by a variety of cells including monocytes/macrophages, activated T cells, endothelial cells and fibroblasts (Van Snick, 1990). IL-6 promotes B-cell activation and induces hepatocytes to produce acute phase proteins (Van Snick, 1990). Furthermore, IL-6 stimulates induction of osteoclast formation and bone resorption (Ishimi *et al*, 1990). It has been reported that IL-6 levels in gingival crevicular fluid are correlated with bleeding

Correspondence: Kazuyuki Noguchi, Periodontology, Department of Hard Tissue Engineering, Graduate School, Tokyo Medical & Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan. Tel: 81-3-5803-5488, Fax: 81-3-5803-0196, E-mail: kazuyuki-noguchi. peri@tmd.ac.jp

index and probing depth in patients with adult periodontitis (Geivelis et al, 1993). The periodontal ligament (PDL) is the unique soft tissue which binds the teeth to the alveolar bone proper. PDL cells are a heterogenous cell population including fibroblastic and mineralized tissue-forming cells (Beersten et al, 1997). In vitro PDL cells have been shown to synthesize IL-6 in response to stimuli including IL-1a (Agarwal et al, 1995). Previously, we demonstrated that PDL cells produce high levels of PGE₂ in response to IL-1 α (Noguchi *et al*, 1999). Several studies have demonstrated that IL-6 generation is regulated by PGE₂ in several types of cells including osteoblasts, astrocytoma cells and gingival fibroblasts (Blom et al, 1997; Takaoka et al, 1999; Noguchi *et al*, 2002). Thus, it is very likely that PGE_2 regulates IL-1\alpha-induced IL-6 production in PDL cells.

In the present study, we investigated the effect of PGE_2 on IL-1 α -induced IL-6 production in PDL cells derived from periodontally healthy subjects and examined which subtypes of PGE_2 receptors were involved.

Materials and methods

Cell preparation

Human PDL cells were obtained from explants of PDLs from premolars or third molars extracted from three periodontally healthy subjects. Our study protocol, including biopsy of gingival tissue, satisfied the ethical standards of Tokyo Medical and Dental University and informed consent was obtained from all the subjects. The cells were cultured in α -minimum essential medium (α -MEM) containing 10% fetal bovine serum (FBS) (Bioserum, Victoria, Australia) in the presence of 100 U ml⁻¹ of penicillin (Sigma Chemical Co., St Louis, MO, USA) and 100 μ g ml⁻¹ of streptomycin (Sigma Chemical Co.) in a humidified atmosphere of 5% CO₂ at 37°C. The cells used for experiments were between the fifth and tenth passages.

Cell stimulation

PDL cells were seeded into 96-well plates at a concentration of 5×10^4 cells ml⁻¹. When the cells reached confluence, the medium was changed to α-MEM containing 0.5% FBS to minimize any serum-induced effects on PDL cells. After 24 h, the cells were stimulated with vehicle or 2 ng ml⁻¹ of human recombinant IL-1 α (Sigma Chemical Co.) in the presence or absence of indomethacin (Wako, Tokyo, Japan), PGE2 (Cascade Biochem Ltd, Berkshire, UK), 17-phenyl-ω-trinor PGE₂ (Cayman Chemical, Ann Arbor, MI, USA), butaprost (a gift from ONO Pharmaceutical Co. Ltd, Tokyo, Japan), ONO-AP-324 (a gift from ONO Pharmaceutical Co. Ltd), ONO-AE1-329 (a gift from ONO Pharmaceutical Co. Ltd), dibutyryl cAMP (Wako) and forskolin (Wako) in the indicated combination and concentrations, which were added to the cells 30 min prior to stimulation with IL-1 α .

PGE_2 and IL-6 assay

The levels of PGE_2 and IL-6 in the conditioned media collected from control or IL-1 α -stimulated cells were

determined by commercially available enzyme-linked immunosorbent assay (ELISA) kits (PGE₂, Amersham Pharmacia Biotech, Buckinghamshire, UK; IL-6, Endogen Inc., Woburn, MA, USA).

Reverse transcription-polymerase chain reaction

Total cellular RNA was isolated from confluent PDL cells. In brief, the cells were lysed and RNA was extracted with the guanidinium thiocyanate/phenol/ chloroform method, using ISOGEN (Nippon gene, Toyama, Japan). After extracting total RNA from PDL cells, cDNAs were synthesized from 2 μ g of total with RAV2 reverse transcripatase and RNA oligo(dT)primers (Takara Co., Shiga, Japan), as described previously. The specific primer pairs for human EP₂, EP₄ and β -actin were selected, according to the cDNA sequences reported by Funk et al (1993), Bastien et al (1994), Regan et al (1994) and Ponte et al (1984), respectively. The primers were EP₁: sense primer, 5'-TCTACCTCCCTGCAGCGGCCACTG-3', antisense primer, 5'-GAAGTGGCTGAGGCCGCTGTGCCGG GA-3'; EP₂: sense primer, 5'-TTCATCCGGCACGG GCGGACCGC-3', antisense primer, 5'-GTCAGCCTG TTTACTGGCATCTG-3'; EP₄: sense primer, 5'-CCTC CTGAGAAAGACAGTGTC-3', antisense primer, 5'-AGGACTCAGAGAGTGTCTT-3'; and β -actin: sense primer, 5'-GTGGGCATGGGTCATCAGAAGGAT-3', antisense primer, 5'-CTCCTTAATGTCACGCAC GATTTC-3'. The PCR reaction was performed using $25 \,\mu\text{M}$ of each primer, $25 \,\text{mM}$ of each dNTP and 2.5 units of Taq DNA polymerase (Takara Co.) in an automated DNA thermal cycler (Takara Co.). The PCR amplification was comprised of 35 cycles (EP_2 and EP_4) or 25 cycles (β -actin) of denaturation at 94°C for 1 min, annealing at 60°C for 1 min and extension at 72°C for 3 min. The reverse transcription-polymerase chain reaction (RT-PCR) products were resolved by electrophoresis in 2% agarose gels and stained with ethidium bromide. The identity of the RT-PCR products of EP₂ and EP₄ was confirmed by restriction endonuclease digestion and nucleotide sequence analysis (data not shown).

Statistical analysis

Data are expressed as the mean \pm standard deviation (s.d.). Data were subjected to one-way analysis of variance (ANOVA), using the StatView 4.0 program on a Macintosh computer. Fisher's protected least significance test was used in the *post hoc* comparison of specific groups.

Results

Effect of indomethacin on $IL-1\alpha$ -induced IL-6 and PGE_2 production in PDL cells

To examine whether PGs endogenously produced affected IL-6 production in IL-1 α -stimulated PDL cells, the effect of indomethacin, a cyclooxygenase inhibitor, on IL-6 production was investigated. Indomethacin significantly increased IL-1 α -induced-IL-6 production (P < 0.01), although PGE₂ production by

PGE₂ regulates IL-6 production K Noguchi et al

Figure 1 Effect of indomethacin on production of IL-6 (**a**) and PGE₂ (**b**) in IL-1 α -stimulated PDL fibroblasts. PDL fibroblasts were stimulated with vehicle or 2 ng ml⁻¹ of IL-1 α in the presence or absence of 1 μ M of indomethacin (IND) for 24 h. After incubation, IL-6 levels (**a**) and PGE₂ levels (**b**) in the culture media were measured by ELISA, as described in Materials and methods. Values are mean \pm s.d. (n = 4). *Significantly different from control (P < 0.01). # Significantly different from Control (P < 0.01).

IL-1 α was completely inhibited by indomethacin (Figure 1a,b), which suggests that endogenous PGs were involved in downregulation of IL-1 α -induced IL-6 production.

Effect of PGE_2 and EP agonists on $IL-1\alpha$ -induced IL-6 production in PDL cells

The effect of exogenous PGE_2 and EP agonists on IL-6 generation was investigated. PGE_2 alone induced an increase of IL-6 production in a dose-dependent man-

Figure 2 Effect of PGE₂ on IL-6 production in IL-1 α -stimulated PDL cells. PDL cells were treated with vehicle or 2 ng ml⁻¹ of IL-1 α in the presence of 1 μ M of indomethacin (IND) and various doses of PGE₂ for 24 h. After incubation, IL-6 levels in the culture media were measured by ELISA, as described in Materials and methods. Values are mean \pm s.d. (n = 4). *Significantly different from IND + IL-1 α (P < 0.01)

ner. However, the levels of PGE2-induced IL-6 were approximately 50-fold less, compared with the levels of IL-1 α -induced IL-6. Next, we examined the effect of PGE_2 and EP agonists on IL-1 α -induced IL-6 production. PDL cells were treated with indomethacin to exclude the involvement of endogenous PGE₂ prior to addition of PGE₂ and EP agonists. Exogenous PGE₂ suppressed IL-1a-induced IL-6 production (Figure 2). Butaprost, a selective EP₂ agonist, and ONO-AE1-329, a selective EP₄ agonist, reduced IL-1 α -induced IL-6 production in a concentration-dependent fashion (Figure 3). 17-Phenyl- ω -trinor PGE₂, an EP₁ agonist, tended to increase IL-1*a*-induced IL-6 production, although not significant, and ONO-AP-324, a selective EP_3 agonist, had no effect on IL-1 α -induced IL-6 production (data not shown). These data suggest that

Figure 3 Effect of butaprost and ONO-AE1-329 on IL-6 production in IL-1 α -stimulated PDL cells. PDL cells were treated with vehicle or 2 ng ml⁻¹ of IL-1 α in the presence of 1 μ M of indomethacin (IND) with or without various doses of butaprost or ONO-AE1-329 for 24 h. After incubation, IL-6 levels in the culture media were measured by ELISA, as described in Materials and methods. Values are mean \pm s.d. (n = 4). *Significantly different from IL-1 α + IND (P < 0.01)

Figure 4 Detection of mRNA expression of EP_1 , EP_2 and EP_4 receptors. Total RNA was extracted from PDL cells of three subjects and RT-PCR was performed to detect mRNA expression of EP_1 , EP_2 and EP_4 receptors

 EP_2 and/or EP_4 receptors were involved in PGE_2 downregulation of IL-1 α -induced IL-6 production.

Expression of EP_1 , EP_2 and EP_4 mRNA in PDL cells We examined mRNA expression of EP_1 , EP_2 and EP_4 receptors in PDL cells by RT-PCR. As shown in Figure 4, EP_1 , EP_2 and EP_4 mRNA was expressed in all three samples of PDL cells.

Effect of cAMP-elevating agents on IL-1 α -induced IL-6 production

We examined the effect of intracellular cAMP on IL-1 α induced IL-6 production. Dibutyryl cAMP, a cAMP analog, and forskolin, an activator of adenylate cyclases, reduced IL-6 production by IL-1 α -stimulated PDL cells (Figure 5).

Discussion

In the present study, we demonstrated that PGE_2 suppressed IL-1 α -induced IL-6 production in PDL cells derived from periodontally healthy subjects. Treatment of IL-1 α -stimulated PDL cells with indomethacin, a cyclooxygenase inhibitor, significantly enhanced IL-6 production, although IL-1 α -induced PGE₂ production was completely inhibited (Figure 1a,b). This finding is consistent with the report by Okada *et al* (1997). Furthermore, exogenous PGE₂ attenuated IL-1 α -induced IL-6 production in a dose-dependent manner (Figure 2). These data suggest that PGE₂ endogenously produced is involved in regulation of IL-6 production in IL-1 α -stimulated PDL cells.

The diversity and selectivity of the effects of PGE_2 are dependent on expression of EP subtypes of PGE_2

Figure 5 Effect of forskolin and dibutyryl cAMP on IL-6 production in IL-1 α -stimulated PDL cells. PDL cells were treated with vehicle or 2 ng ml⁻¹ of IL-1 α in the presence of 1 μ M of indomethacin (IND) and 10 μ M of forskolin and 100 μ M of dibutyryl cAMP (dbcAMP). After incubation, IL-6 levels in the culture media were measured by enzyme-linked immunosorbent assay, as described in Materials and methods. Values are mean \pm s.d. (n = 4). *Significantly different from IND + IL-1 α (P < 0.05)

receptors. EP1 receptors and EP2/EP4 receptors are involved in increases in intracellular calcium levels and elevation of intracellular cAMP levels, respectively (Negishi et al, 1995; Narumiya et al, 1999). It is unclear what types of EP receptors are expressed in PDL cells. Butaprost, a selective EP₂ agonist, and ONO-AP1-329, an EP₄ agonist, inhibited IL-6 production by IL-1αstimulated PDL cells (Figure 3). 17-Phenyl-w-trinor PGE₂, an EP₁ agonist, tended to increase IL-1 α -induced IL-6 production, although not significant, and ONO-AP-324, a selective EP₃ agonist, had no effect on IL-1αinduced IL-6 production (data not shown). RT-PCR analysis showed that mRNA of EP1, EP2 and EP4 receptors was expressed in PDL cells (Figure 4). Furthermore, both EP_2 and EP_4 agonists increased intracellular cAMP levels in PDL cell (data not shown). It has been demonstrated that the actions of PGE_2 in PDL cells are mediated by intracellular cAMP (Nohutcu et al, 1993). From these data, we suggest that EP₂ and/ or EP₄ receptors are involved in PGE₂ inhibition of IL- 1α -induced IL-6 production. It has been shown that PGE₂ inhibits IL-1 β -induced IL-6 production via EP₂ and EP₄ receptors in rat synovial cells (Kurihara et al, 2001).

cAMP-elevating agents including dibutyryl cAMP and forskolin caused suppression of IL-1 α -induced IL-6 production (Figure 3). Therefore, it is very likely that cAMP-dependent pathways via EP₂/EP₄ receptors are involved in PGE₂ downregulation of IL-1 α -induced IL-6 production in PDL cells. In the present study, the mechanism by which cAMP attenuates IL-1 α -induced IL-6 production in PDL cells was not investigated. Transcriptional factors including nuclear factor (NF)-IL-6, NF- κ B and AP-1 are required for IL-6 gene activation (Dendorfer *et al*, 1994) and cAMP inhibits NF- κ B-mediated transcription in human monocytic cells and endothelial cells (Ollivier *et al*, 1996). Zitnik *et al* (1993) have showed that in human lung fibroblasts cAMP downregulates IL-1 α -induced IL-6 production, which is mediated by decreased IL-6 gene expression. However, Takigawa *et al* (1994) have reported that IL-1 β -induced IL-6 production in HGF may be inhibited by PGE₂ at the post-transcriptional level. Further studies are necessary to reveal the mechanism by which cAMP downregulates IL-1 α -induced IL-6 production in PDL cells.

The roles of IL-6 produced by PDL cells remain unclear. IL-6 promotes B-cell activation and induces hepatocytes to produce acute phase proteins (Van Snick, 1990). Furthermore, IL-6 stimulates induction of osteoclast formation and bone resorption (Ishimi et al, 1990). It has been reported that IL-6 levels in gingival crevicular fluid are correlated with bleeding index and probing depth in patients with adult periodontitis (Geivelis et al, 1993). Therefore, it is likely that IL-6 plays an important role in controlling inflammatory and immune responses in periodontal disease. It has been shown that IL-1 β -induced IL-6 production is regulated by PGE₂ in HGF (Agarwal et al, 1995; Noguchi et al, 2002). Taken together with our present data that PGE_2 inhibited IL-1 α -induced IL-6 production in PDL cells, it is plausible that PGE_2 is involved in controlling IL-6 production in periodontally diseased tissues. Further investigation is needed to elucidate the roles of PGE₂ in periodontal disease.

In conclusion, we suggest that PGE_2 downregulates IL-1 α -elicited IL-6 production through cAMP-dependent pathways via EP_2/EP_4 receptors in human PDL cells. Expression and function of EP_2 and EP_4 receptors in PDL cells may play critical roles in controlling inflammatory periodontal conditions.

References

- Agarwal S, Baran C, Piesco NP *et al.* (1995). Synthesis of proinflammatory cytokines by human gingival fibroblasts in response to lipopolysaccharides and interleukin-1 β . J Periodontal Res **30**: 382–389.
- Bastien L, Sawyer N, Grygorczyk R, Metters KM, Adam M (1994). Cloning, functional expression, and characterization of the human prostaglandin E₂ receptor EP₂ subtype. *J Biol Chem* **269**: 11873–11877.
- Beersten W, McCulloch CAG, Sodek J (1997). The periodontal ligament: a unique, multifunctional connective tissue. *Periodontol 2000* **13:** 20–40.
- Blom MA, van Twillert MG, de Vries SC *et al.* (1997). NSAIDS inhibit the IL-1 β -induced IL-6 release from human post-mortem astrocytes: the involvement of prostaglandin E₂. *Brain Res* **777**: 210–218.
- Dendorfer U, Oettgen P, Libermann TA (1994). Multiple regulatory elements in the interleukin-6 gene mediate induction by prostaglandins, cyclic AMP, and lipopolysac-charide. *Mol Cell Biol* 14: 4443–4454.

- Funk CD, Furci L, FitzGerald GA *et al.* (1993). Cloning and expression of a cDNA for the human prostaglandin E receptor EP₁ subtype. *J Biol Chem* **268**: 26767–26772.
- Geivelis M, Turner DW, Pederson ED, Lambers BL (1993). Measurement of interleukin-6 in gingival crevicular fluid from adults with destructive periodontal disease. J Periodontol 64: 980–983.
- Ishimi Y, Miyaura C, Jin CH *et al.* (1990). IL-6 is produced by osteoblasts and induces bone resorption. *J Immunol* **145**: 3297–3303.
- Klein DC, Raisz JG (1970). Prostaglandins: stimulation of bone resorption in tissue culture. *Endocrinology* **86:** 1436–1440.
- Kurihara Y, Endo H, Akatoshi T, Kondo H (2001). Upregulation of prostaglandin E receptor EP2 and EP4 subtypes in rat synovial tissues with adjuvant arthritis. *Clin Exp Immunol* **123**: 323–330.
- Narumiya S, Sugimoto Y, Ushikubi F (1999). Prostanoid receptors: structures, properties, and functions. *Physiol Rev* **79**: 1193–1226.
- Negishi M, Sugimoto Y, Ichikawa A (1995). Molecular mechanisms of diverse actions of prostanoid receptors. *Biochim Biophys Acta* **1259**: 109–119.
- Noguchi K, Shitashige M, Ishikawa I (1999). Involvement of cyclooxygenase-2 in interleukin-1α-induced prostaglandin production by human periodontal ligament cells. *J Periodontol* **70**: 902–908
- Noguchi K, Shitashige M, Endo H, Kondo H, Ishikawa I (2002). Binary regulatiion of interleukin(IL)-6 production by EP₁ and EP₂/EP₄ subtypes of PGE₂ receptors in IL-1 β -stimulated human gingival fibroblasts. *J Periodontal Res* **37**: 29–36.
- Nohutcu RM, McCauley LK, Horton JE, Capen CC, Rosol TJ (1993). Effects of hormones and cytokines on stimulation of adenylate cyclase and intracellular calcium concentration in human and canine periodontal-ligament fibroblasts. *Arch Oral Biol* **38**: 871–879.
- Offenbacher S, Odle BM, Gray, RC, Van Dyke TE (1984). The use of crevicular fluid prostaglandin E levels as a measure of the periodontal disease status of adult and juvenile periodontitis patients. *J Periodontal Res* **19**: 1–13.
- Offenbacher S, Heasman PA, Collins JG (1993). Modulation of host PGE₂ secretion as a determinant of periodontal disease expression. *J Periodontol* **164**: 432–444.
- Ohm K, Albers HK, Lisboa BP (1984). Measurement of eight prostaglandins in human gingival and periodontal disease using high pressure liquid chromatography and radioimmunoassay. J Periodontal Res 19: 501–511.
- Okada N, Kobayashi M, Mugikura K *et al.* (1997). Interleukin-6 production in human fibroblasts derived from periodontal tissues is differentially regulated by cytokines and a glucocorticoid. *J Periodontal Res* **32**: 559–569.
- Ollivier V, Parry GCN, Cobb RC, de Prost D, Mackman N (1996). Elevated cyclic AMP inhibits NF- κ B-mediated transcription in human monocytic and endothelial cells. *J Biol Chem* **271**: 20828–20835.
- Ponte P, Ng SY, Engel J, Gunning P, Kedes L (1984). Evolutionary conservation in the untranslated regions of actin mRNAs: DNA sequence of a human beta-actin cDNA. *Nucleic Acids Res* **12**: 1687–1696.
- Regan JW, Bailey TJ, Pepperl DJ *et al.* (1994). Cloning of a novel human prostaglandin receptor with characteristics of the pharmacologically defined EP2 subtype. *Mol Pharmacol* **46**: 213–220.

- Takaoka Y, Niwa S, Nagai H (1999). Interleukin-1 β induces interleukin-6 production through the production of prostaglandin E(2) in human osteoblasts, MG-63 cells. *J Biochem* (*Tokyo*) **126**: 553–558
- Takigawa M, Takashiba S, Takahashi K, Arai H, Kurihara H, Murayama Y (1994). Prostaglandin E_2 inhibits interleukin-6 release but not its transcription in human gingival fibroblasts stimulated with interleukin-1 β or tumor necrosis factor- α . J Periodontol 65: 1122–1127.
- Van Snick JV (1990). Interleukin-6: an overview. Annu Rev Immunol 8: 253–297.
- Williams RC, Jeffcoat MK, Howell TH *et al.* (1989). Altering the progression of human alveolar bone loss with the nonsteroidal anti-inflammatory drug flurbiprofen. *J Periodontol* 60: 485–490.
- Zitnik RJ, Zheng T, Elias JA (1993). cAMP inhibition of interleukin-1-induced interleukin-6 production by human lung fibroblasts. *Am J Physiol* **264:** L253–L260.

Copyright of Oral Diseases is the property of Blackwell Publishing Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.