
INVITED REVIEW

Bone marrow-derived mesenchymal stem cells for
regenerative medicine in craniofacial region
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The craniofacial region contains many specified tissues

including bone, cartilage, muscle, blood vessels and neu-

rons. Defect or dysfunction of the craniofacial tissue after

post-cancer ablative surgery, trauma, congenital mal-

formations and progressive deforming skeletal diseases

has a huge influence on the patient’s life. Therefore,

functional reconstruction of damaged tissues is highly

expected. Bone marrow-derived mesenchymal stem cells

(BMMSCs) are one of the most well characterized post-

natal stem cell populations, and considered to be utilized

for cell-based clinical therapies. Here, the current un-

derstanding and the potential applications in craniofacial

tissue regeneration of BMMSCs are reviewed, and the

current limitations and drawbacks are also discussed.
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Introduction

In recent years, stem cell research provides fundamental
knowledge for translating stem cell-mediated tissue
regeneration into clinical therapies. The craniofacial
region contains many specified tissues including bone,
connective tissue, fat, blood vessels, neural tissue and
muscle. Reconstruction of craniofacial components is
one of the most important and intricate objectives in
stem cell-mediated regenerative medicine (Warren et al,
2003; Cowan et al, 2004; Warnke et al, 2004). In
addition, craniofacial deformities have enormous psy-
chosocial impacts for individuals, with the most com-
mon causes for craniofacial defects being post-cancer
ablative surgery, trauma, congenital malformations, and
progressive deforming skeletal diseases (Phillips et al,

1992; Jeffcoat, 1993; Nguyen and Sullivan, 1993).
Autogenous graft, allogeneic graft, and various allo-
plastic materials, such as demineralized bone matrices,
synthetic bone pastes, and semisynthetic scaffolds,
which have been utilized to reconstruct craniofacial
defects have all led to improved clinical outcomes of
various degrees. However, these approaches showed
inherent limitations, such as insufficient autogenous
resources, donor site morbidity, contour irregularities,
disease transmission, major histoincompatibility, graft-
versus-host disease (GVHD), immunosuppression,
unpredictable outcome for bone formation, and infec-
tion of foreign material (Jackson et al, 1986; Oklund
et al, 1986; Sawin et al, 1998; Warren et al, 2003). To
overcome these limitations, stem cell-based tissue regen-
eration offers a promising approach to providing an
advanced and reliable therapeutic strategy for craniofa-
cial tissue repair.

One potential avenue for developing a stem cell-based
therapy is the use of embryonic stem (ES) cells, which
are derived from the inner cell mass of the blastocyst
and possess pluripotent differentiation capacity (Evans
and Kaufman, 1981; Martin, 1981; Shamblott et al,
1998; Thomson et al, 1998). Although ES cells are
considered as important cell resources in the future for
many tissue repair/regeneration applications, the clinical
use of ES cells is still limited because of ethical issues,
uncontrolled differentiation of ES cells, and immune
rejection problems between donor and recipient. More-
over, long-term clinical trials are necessary to exclude
the possibility of chromosomal instability and tumori-
genesis when ES cells are utilized in vivo.

Tissue-specific postnatal stem cells have been isolated
from a variety of organs and tissues, including but not
limited to, bone marrow (Castro-Malaspina et al, 1980;
Civin et al, 1984; Baum et al, 1992; Craig et al, 1993;
Prockop, 1997; Pittenger et al, 1999; Kondo et al, 2003),
neural tissue (Flax et al, 1998; Johansson et al, 1999),
muscle (Chen and Goldhamer, 2003; Huard et al, 2003),
skin (Lavker and Sun, 2000; Janes et al, 2002), eye
(Lavker and Sun, 2003), intestine (Marshman et al,
2002), and liver (Alison et al, 1997; Shafritz and
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Dabeva, 2002). It was reported that craniofacial tissues
also contain postnatal stem cells such as bone marrow-
derived mesenchymal stem cells (BMMSCs), dental pulp
stem cells, periodontal ligament stem cells, and stem
cells from human exfoliated deciduous teeth (SHED)
(Gronthos et al, 2000, 2002; Miura et al, 2003; Seo et al,
2004; Matsubara et al, 2005; Akintoye et al, 2006).
However, bone marrow is the only system thus far that
provides stem cells for successful and routine treatment
of hematopoietic diseases, cancer therapy, and GVHD
(Mulder et al, 1989; Broun et al, 1997; Thomas, 1999;
Le Blanc et al, 2004). Bone marrow contains at least
two populations of postnatal stem cells; hematopoietic
stem cells (HSCs), which can reconstitute all blood cell
lineages (Lemischka et al, 1986; Osawa et al, 1996), and
mesenchymal stem cells (MSCs), which are derived from
bone marrow stromal tissues with the capacity for
multipotent differentiation into cell types of mesodermal
origin such as osteoblasts, chondrocytes, adipocytes,
and muscle cells (Castro-Malaspina et al, 1980; Proc-
kop, 1997; Pittenger et al, 1999). Both HSCs and MSCs
have been used to treat a variety of human diseases and
tissue defects (Korbling and Estrov, 2003). Transplan-
tation of whole bone marrow cells or mobilized periph-
eral blood, which includes HSCs and MSCs, has been
used to treat a variety of hematopoietic diseases and
malignancies, following systemic infusion into patients.
To date, there is no evidence to show that bone marrow-
derived stem cells have given rise to any primary cancers
or had any association with severe side effects since the
first successful allogeneic marrow graft performed in a
patient 38 years ago (Thomas, 1999). Taken together,
BMMSCs have been considered of an effective and safe
resource for stem cell-based clinical therapy. In this
review, we discuss the potential of BMMSC-mediated
tissue regeneration for repairing craniofacial tissues.

Biology of BMMSCs

The resource of MSCs
Mesenchymal stem cells have been isolated from different
organs, including bone marrow, skeletal muscle, dermis,
adipose tissue, muscle, dental pulp, and periodontal
ligament (Gronthos et al, 2000; Lee et al, 2000; Halvor-
sen et al, 2001; Jankowski et al, 2001; Zuk et al, 2001;
Gimble and Guilak, 2003; Miura et al, 2003; Seo et al,
2004). Interestingly, peripheral blood may also contain
MSCs (Fernandez et al, 1997; Zvaifler et al, 2000;
Kuznetsov et al, 2001). It was reported recently that
human nonadherent osteocalcin-positive cells from per-
ipheral blood possess an osteogenic potential in vivo,
which supports the possibility of the existence of func-
tional MSCs in circulating peripheral blood (Eghbali-
Fatourechi et al, 2005). Additionally, the existence of
MSCs in umbilical cord blood was also reported
(Goodwin et al, 2001; Gang et al, 2004). These evidences
suggest that MSCs can be obtained from a variety of
tissues for MSC-mediated therapies although MSCs
from bone marrow have been studied intensively. How-
ever, it is necessary to be cautious while selecting the stem
cell resource for the therapies because of the fact that

organ- or tissue-specific traits may affect the stem cell
behavior (Phinney et al, 1999b; Gronthos et al, 2001; Shi
et al, 2005; Akintoye et al, 2006). For instance, recent
studies have suggested that BMMSCs derived from
craniofacial bone may differ from those derived from
long bone in terms of cell proliferation and differenti-
ation (Matsubara et al, 2005; Akintoye et al, 2006).
Human orofacial bone marrow mesenchymal cells
showed an increased proliferation rate and bone-forming
capacity in vitro and in vivo but did not support an
organized hematopoietic marrow organ as seen in
BMMSC transplants from long bone (Akintoye et al,
2006). Inherent nature of the specific organ/tissue may
account, at least in part, for this discrepancy. Craniofa-
cial skeletal tissues including maxilla, mandible, and
teeth are thought to be derived from neural crest cells,
whereas long bones are derived from themesoderm (Chai
et al, 2000). Moreover, the existence of orofacial-specific
skeletal diseases such as cherubism (Ueki et al, 2001),
hyperparathyroid jaw tumor syndrome (Simonds et al,
2002), and craniofacial fibrous dysplasia (Akintoye et al,
2003) supports the notion that craniofacial bones are
different from long bones in their development, function,
and disease progress. Furthermore, there are limitations
to collecting sufficient bone marrow samples from the
orofacial region to obtain adequate numbers of
BMMSCs for therapeutic purposes, because of the
limited size of the orofacial bones. Therefore, utilizing
appropriate stem cell populations from the most favora-
ble donor site might be critical to achieve the ideal or
optimal outcomes in stem cell-based therapies.

Isolation of BMMSCs
Bone marrow-derived mesenchymal stem cells are a
subpopulation of the total bone marrow mononuclear
cells, which can be isolated from whole bone marrow
aspirates or from isolated mononuclear cells following
density-gradient Ficoll separation. (Castro-Malaspina
et al, 1980; Simmons and Torok-Storb, 1991a,b;
Falla et al, 1993; Waller et al, 1995; Prockop, 1997;
Pittenger et al, 1999). BMMSCs adhere to tissue culture
plastic and are identified based on their capacity to
generate clonogenic cell aggregates when plated at low
cell densities, initially termed colony-forming unit-
fibroblasts (CFU-F) (Friedenstein et al, 1970; Frieden-
stein, 1976; Pittenger et al, 1999). However, these bone
marrow-adherent cells consist of heterogeneous popu-
lations in which multipotent BMMSCs represent only a
small fraction of the total CFU-F population (Castro-
Malaspina et al, 1980; Falla et al, 1993; Waller et al,
1995; Kuznetsov et al, 1997; Pittenger et al, 1999;
Gronthos et al, 2003). The establishment of methods
to isolate a purified population of BMMSCs is essential
for characterizing the multipotent BMMSCs. Although
there is no ideal method to purify the homogeneous
populations of BMMSCs from bone marrow, recent
advances have identified cell-surface molecules
expressed by immature noncommitted BMMSCs.

The monoclonal antibody, STRO-1 was identified by
its reactivity with stromal cells in the adherent layers of
long-term bone marrow cultures and CFU-F isolated
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from human bone marrow (Simmons and Torok-Storb,
1991b; Gronthos et al, 1994). STRO-1, whose antigen
has yet to be identified, does not react with hematopoi-
etic committed progenitors, but binds to approximately
10% of bone marrow mononuclear cells. The STRO-1+

fraction of bone marrow mononuclear cells showed a
high clonogenic capacity when compared with unfract-
ionated cells (Shi and Gronthos, 2003) and exhibited the
ability to differentiate into multiple cell lineages inclu-
ding myelosupportive stromal cells, osteoblasts, adipo-
cytes, and chondrocytes (Simmons and Torok-Storb,
1991a; Gronthos et al, 1994, 2003; Dennis et al, 2002).
Furthermore, two other antigens, CD106 (VCAM-1)
and CD146 (MUC18) have been reported as early
progenitor markers for BMMSCs (Filshie et al, 1998;
Gronthos et al, 2003; Shi and Gronthos, 2003). Their
expression was found to be restricted to a minor fraction
of STRO-1 high-expressing bone marrow mononuclear
cells. CFU-F could be enriched up to approximately
5000-fold relative to their incidence by unfractionated
cells on the basis of the use of STRO-1 combined with
CD106 or CD146, (STRO-1bright/CD106+ or STRO-
1bright/CD146+) (Gronthos et al, 2003; Shi and Gron-
thos, 2003). Other antigens including a-smooth muscle
actin, mesenchymal associated surface molecules
CD49a, CD73, CD90, and CD166, as well as endothelial
progenitor related marker CD105 were also reported to
be positive on BMMSCs following ex vivo expansion
(Simmons and Torok-Storb, 1991b; Galmiche et al,
1993; Conget and Minguell, 1999; Pittenger et al, 1999).
Some of these markers are known to be expressed by
endothelial/perivascular cells. These observations and
accumulating data suggest that mesenchymal stem/
progenitor cells are closely related with vascular peri-
cytes (Schor et al, 1995; Doherty et al, 1998; Shi and
Gronthos, 2003). More recently, CD18 (b-2 integrin)
has been identified as a new surface marker of BMMSC
and shown to play a critical role in the osteogenic
differentiation of BMMSCs (Miura et al, 2005b). The
expression of CD18 is limited to the very early stem
progenitors of BMMSCs, where it is rapidly lost as the
cells undergo ex vivo expansion. Two-color fluorescence
cell sorting using a combination of CD18 and STRO-1
resulted in the enrichment of CFU-F in the double-
positive population (Miura et al, 2005b). These data lay
the foundation for potential discovering of new cell-
surface molecules expressed by BMMSCs to help the
define discrete differentiation stages of stromal cell
development. Moreover, this approach will help develop
more effective strategies for isolating highly purified
BMMSCs based on multiple antigen expression.

Following ex vivo expansion in the presence of serum,
BMMSCs show an altered gene expression profile to
that described prior to culture (Gronthos et al, 2003; Shi
and Gronthos, 2003). In particular, many genes are
subsequently up-regulated in culture associated with
committed osteoblast, adipocyte, and chondrocyte
(Castro-Malaspina et al, 1980; Vilamitjana-Amedee
et al, 1993; Rickard et al, 1996; Gronthos et al, 2003).
Extensive ex vivo culture may also lead to a decreased
capacity for osteogenic differentiation by BMMSCs

in vitro and in vivo (Shi et al, 2002; Simonsen et al,
2002). These findings suggest that the �stemness’ of
BMMSCs may not be maintained consistently under
conventional ex vivo culture conditions. Therefore, in
addition to isolating highly purified BMMSCs, it is
necessary to establish optimal culture conditions, per-
haps using serum-free medium (Gronthos and Simmons,
1995) for expanding BMMSCs to reach sufficient
numbers of stem/progenitor cells for clinical therapies.

Plasticity of BMMSCs
Bone marrow-derived mesenchymal stem cells are cap-
able of extensive self-renewal and are able to differentiate
into multiple cell lineages including bone, cartilage,
adipose tissue, hematopoiesis-supporting stroma, mus-
cles, and tendon (Bruder et al, 1994; Prockop, 1997;
Bianco and Robey, 2001). The most established differen-
tiation trait of BMMSCs is to formbone and anorganized
bone-associated hematopoietic marrow when transplan-
ted into immunocompromised animals (Ashton et al,
1980; Friedenstein et al, 1982; Bab et al, 1988; Goshima
et al, 1991; Cassiede et al, 1996; Krebsbach et al, 1997).
Recent reports indicated that adult bone marrow cells
have a potential to differentiate into nonmesoderm-
originated cell types, including neurons and glia,
hepatocytes and bile duct epithelia, renal epithelia and
podocytes, and gut mucosal cells and associated myofi-
broblasts (Poulsom et al, 2002). Moreover, existence of
multipotent adult progenitor cell (MAPC) further sup-
ports the plasticity of BMMSCs (Jiang et al, 2002a,b).
MAPCs, a rare population of murine BMMSCs, showed
anunlimited proliferation capacity anddifferentiated into
the cells originating from all three germ layers. In
contrast, other reports identified that bone marrow cells
are capable of fusing with differentiated hepatocytes,
Purkinje neurons, and cardiomyocytes (Alvarez-Dolado
et al, 2003; Vassilopoulos et al, 2003; Wang et al, 2003).
At present, the plasticity of BMMSCs is inconclusive
because transdifferentiation or cell fusion of bonemarrow
cells is based on utilizing the whole bone marrow cells,
which include hematopoietic stem cells, mesenchymal
stem cells and endothelial precursor cells known as
angioblasts (Eglitis and Mezey, 1997; Shi et al, 1998;
Asahara et al, 1999; Petersen et al, 1999; Brazelton et al,
2000; Mezey et al, 2000). Therefore, the mechanisms of
transdifferentiation need to be clarified to elucidate if
transdifferentiation is due to cell �plasticity’ or caused by
stem cell fusion (Terada et al, 2002; Ying et al, 2002;
Vassilopoulos and Russell, 2003; Alison et al, 2004).

Immortalization/transformation of BMMSCs
Embryonic stem cells are capable of producing terato-
mas when injected into immunocompromised mice.
However, any stem cell-based therapy will have to
ascertain that their stem cell preparations retain a
normal chromosomal complement after in vivo admin-
istration. As a result of their slower growth rate and
absence of telomerase activity in vitro, MSCs are
presumed to have a lower risk for tumor formation
compared with embryonic stem cells (Rosenthal, 2003).
However, it was recently reported that human adult
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MSCs from adipose tissues and mouse BMMSCs
underwent spontaneous transformation and formed
osteosarcoma cells after long-term culture (Rubio et al,
2005). Conversely, rigorous assessment of human
BMMSCs failed to demonstrate any potential for
transformation under the culture conditions shown to
induce spontaneous transformation of murine
BMMSCs or human adipose-derived MSC (Miura et al,
2005a). The spontaneous immortalization of stem cells
is, therefore, a critical issue in the context of human
therapies, and warrants further investigations to eluci-
date potential mechanisms by which MSCs spontane-
ously transform into tumor cells.

Clinical application of BMMSCs for tissue
regeneration in craniofacial region

The craniofacial region mainly consists of bone, carti-
lage, adipose tissue, muscle, nerve, and dental tissue.
Many of these tissues have originated from either
mesoderm-derived cells or ectoderm-derived neural crest
cells during development. BMMSCs have been reported
to differentiate, at least, into mesoderm-derived tissues,
including bone, cartilage, adipose tissue, and muscle.
Therefore, BMMSCs may be the ideal candidates for the
regeneration of multiple tissue types in different cranio-
facial regions.

Bone tissue regeneration
When cultured in the presence of dexamethasone,
inorganic phosphate and ascorbic acid, BMMSCs can
differentiate into osteoblastic-like cells with the capa-
city to synthesize mineralized nodules (Gronthos et al,
1994; Pittenger et al, 1999). Under these conditions,
uncommitted BMMSCs begin to express many osteo-
genic markers such as CBFA1/Runx2, osterix, osteo-
pontin, parathyroid hormone receptor, and osteocalcin
which are not expressed by freshly isolated BMMSCs
(Gronthos et al, 2003). Interestingly, only a subset of
high-proliferating single colony-derived BMMSC
clones (approximately 60%) was capable of forming
ectopic bone upon in vivo transplantation into immu-
nocompromised mice (Kuznetsov et al, 1997; Gronthos
et al, 2003). Despite the nature of heterogeneity in
ex vivo expanded BMMSCs, successful repair of bone
defects has been achieved in both calvarial and long
bone in various animal models (Bruder et al, 1998;
Krebsbach et al, 1998; Kon et al, 2000; Petite et al,
2000; Mankani et al, 2001). In addition, optimal
outcomes have been achieved in studies by using
autologous BMMSCs to treat human patients with
different bone defects (Quarto et al, 2001; Warnke
et al, 2004). For example, the study by Warnke et al
(2004) designed a custom-made biomaterial scaffold
that contained BMP-7 and autologous bone marrow in
order to generate a functional mandible. Although the
origin of the cells (presumed to be BMSSCs) respon-
sible for the regeneration of the mandible was not
defined, the patient developed an improved mastication
function and was reported to be satisfied with the
esthetic outcome.

Another important feature of in vivo osteogenesis of
BMMSCs is the capacity of these cells to facilitate
formation of organized hematopoietic marrow ele-
ments, which originate from recipient cells, when
transplanted into immunocompromised mice with
hydroxyapatite/tricalcium phosphate ceramic powder
as a carrier (Ashton et al, 1980; Friedenstein et al,
1982; Bab et al, 1988; Goshima et al, 1991; Cassiede
et al, 1996; Krebsbach et al, 1997). After successful
BMMSC transplantation, donor cells actively form
bone on the surface of the carrier vehicle and the
recipient cells are induced to form hematopoietic
marrow elements, leading to a bone/marrow organ-
like structure. However, the mechanisms by which
osteogenic differentiation of BMMSC influences the
organization of recipient marrow components, are yet
to be elucidated.

Cartilage tissue regeneration
Craniofacial tissue contains several areas, which consist
of cartilage, such as nose, ear, and temporomandibular
joint (TMJ). Surgery, congenital deformity, trauma, or
some types of TMJ disorders may lead to a loss or
destruction of the cartilage matrix. It is anticipated that
cartilage regeneration may offer an alternative approach
to the treatment of these disorders. BMMSCs can
differentiate to chondrocytes when cultured under a
three-dimensional serum-free setting in the presence of
transforming growth factor (TGF)-bs (Pittenger et al,
1999), which was confirmed by the expression of type II
collagen and aggrecan (Pittenger et al, 1999; Gronthos
et al, 2003). When ovine BMMSCs were seeded onto
biodegradable scaffolds and subsequently implanted
into fetal tracheas, they showed a significant chondro-
genic differentiation (Fuchs et al, 2003). Moreover,
improved cartilage repair in patellar groove defects
was observed following implantation of rabbit BMMSC
(Wakitani et al, 1994; Im et al, 2001). At the molecular
and cellular levels, recent studies have demonstrated
that the Wnt/b-catenin pathway may play a crucial role
in regulating chondrogenesis of BMMSCs (Day et al,
2005; Hill et al, 2005). Ectopic canonical Wnt signaling
leads to enhanced ossification and suppression of
chondrocyte formation, while genetic inactivation of
beta-catenin causes ectopic formation of chondrocytes.
While the requirement of high-quality cell preparations,
growth factors, and ideal scaffolds poses many chal-
lenges for cell-based therapies, BMMSCs have shown a
great therapeutic potential to repair cartilage defects
(Magne et al, 2005; Raghunath et al, 2005).

Adipose tissue regeneration
Adipose tissue in different craniofacial regions may have
considerable impact on the appearance of facial fea-
tures. BMMSCs can differentiate to adipocytes when
cultured with the inductive medium, which contains
hydrocortisone, indomethacin, insulin, and iso-
butylmethylxanthine (Pittenger et al, 1999; Gimble and
Guilak, 2003). The adipocytes derived from BMMSCs
show cytoplasmic lipid vacuoles positively stained with
oil red red O. This differentiation can be genetically
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confirmed by the expression of the fat-associated mark-
ers, peroxisone proliferator-activated receptor
(PPAR)c2 and leptin (Gronthos et al, 2003). On the
other hand, adipose-derived adult mesenchymal cells
have also been demonstrated as a population of multi-
potent stem cells, which can differentiate into adipogen-
ic, osteogenic, chondrogenic, myogenic, and neuronal
strains. BMMSCs, however, can be an alternative
resource to regenerate adipose tissue for cosmetic
purpose and for tissue repair in craniofacial reconstruc-
tive surgery.

Muscular tissue regeneration
It has been shown that demethylation compounds such
as 5-azacytidine or amphotericin B can induce myogenic
differentiation of BMMSCs in vitro (Wakitani et al,
1995; Makino et al, 1999; Phinney et al, 1999a). Many
reports have demonstrated that implantation of cultured
bone marrow mononuclear cells by intracoronary injec-
tion improves left ventricular function (Assmus et al,
2002; Strauer et al, 2002; Wollert et al, 2004) although
the question of transdifferentiation of bone marrow-
derived cells into cardiomyocytes has been raised
(Balsam et al, 2004; Murry et al, 2004). Recently,
several clinical trials have reported an improvement of
myocardial function by autologous BMMSC transplan-
tation after acute myocardial infarction (Chen et al,
2004; Price et al, 2006). Collectively, these studies
demonstrate a potential therapeutic use of BMSSC for
regeneration of cardiac and perhaps skeletal muscles,
particularly for patients who have undergone a radical
surgery or trauma, including patients who have prob-
lems in mastification.

Other tissue regeneration
Bone marrow-derived mesenchymal stem cells have been
reported to differentiate to other tissues (Korbling and
Estrov, 2003) of non-mesodermal origin by their capa-
city to regenerate neural cells (Eglitis and Mezey, 1997;
Azizi et al, 1998; Kopen et al, 1999; Woodbury et al,
2000) and recovery of injured spinal cord (Hofstetter
et al, 2002). Although all these studies encourage further
investigations into the therapeutic potential of
BMMSCs, many questions still remain to be answered,
such as the cell origin of regenerated tissues, mecha-
nisms of transdifferentiation, donor variation of growth/
differentiation potential, and long-term effects of cell
transplantation.

Delivery of BMMSCs

There are two important issues for efficiency of stem
cell-mediated tissue regeneration. First, there is a
requirement to deliver sufficient numbers of functional
cells to the desired site. Local transplantation of
BMMSCs is a practical method for tissue regeneration
in craniofacial regions as the treatment area is relatively
easy to access. The efficiency of delivery of BMMSCs
injected systemically into the desired site is still unpre-
dictable and often limited. However, BMMSCs have
been reported to engraft and differentiate site-specific-

ally in multiple organs after systemic injection (Liechty
et al, 2000) and migrate into an injured site (Wang et al,
2002a,b). There are some suggestions that genetic
manipulation of BMMSCs may improve the capacity
of these cells to home into specific sites of tissue damage
in the future. The genetic manipulation of BMSSCs may
also improve the maintenance of �stemness’ and/or
induce the lineage-specific commitment prior to implan-
tation. Studies of enforced human telomerase expressing
BMMSCs have been reported to extend their lifespan
and enhance their osteogenic potential in vitro and
in vivo (Shi et al, 2002; Simonsen et al, 2002). In
addition, BMP-transfected BMMSCs have been suc-
cessfully used to treat large segmental femoral and
calvarial bone defects in animal models (Lieberman
et al, 1998; Gysin et al, 2002). The drawback of
genetically manipulated BMMSCs is that this approach
is difficult to translate directly into any clinical applica-
tion because of the possibility that the components used
in genetic manipulation (i.e. vector) can be negative
factors for a normal human body. Secondly, any local
transplantation of BMSSC will also need to be per-
formed in combination with suitable biocompatible
scaffolds which will be critical in determining the
survival rate and differentiation potential of the cells
(Raghunath et al, 2005). Therefore, it is necessary to
develop tissue-specific scaffolds to facilitate optimal
tissue regeneration and repair of stem cells in vivo.

Future direction

Many recent reports suggest that BMMSCs have a
promising potential to be utilized for regenerative
medicine including craniofacial regions. However, it is
clear that there are several critical questions which
have to be addressed in order to develop effective
treatments. First, BMMSCs are a heterogeneous
population of cells which contain cells at different
stages of development. Although many molecules have
been reported as cell-surface markers specific for
BMMSCs, it is still difficult to isolate highly purified
BMMSCs. Secondly, it is critical to understand how
to maintain the �stemness’ of BMMSCs following
ex vivo expansion, and then how to direct tissue-
specific regeneration in the presence of complex
interactions with recipient tissues. In order to under-
stand the stem cell properties of BMMSCs in depth,
identification of the local microenvironment or stem
cell �niche’ is essential for finding the markers to
define BMMSCs at early stages of development and to
assess their functions. Thirdly, tissue regeneration in
craniofacial regions demands more predictable out-
comes because craniofacial tissues consist of many
relatively small and complicated components that have
a huge impact on an individual’s psychosocial condi-
tion. To enhance or control the differentiation of stem
cells, proper application methods such as delivering
methods, genetic manipulation, combinations of stem
cells with growth factors and suitable biomaterials
have to be further improved. Although there are many
challenges ahead of us in terms of utilizing stem cells
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for tissue regeneration, BMMSCs are one of the most
promising postnatal stem cell populations for tissue
repairing and regeneration for a wide range of organs,
including craniofacial tissues.
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