http://www.blackwellmunksgaard.com

ORIGINAL ARTICLE

Arachidonic acid inhibits osteoblast differentiation through cytosolic phospholipase A_2 -dependent pathway

K Yoshida¹, H Shinohara², Suryono², T Haneji¹, T Nagata²

¹Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima, Japan; ²Department of Endodontology and Periodontology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima, Japan

OBJECTIVE: Arachidonic acid, a precursor of prostaglandins (PGs), is released by phospholipase A_2 (PLA₂) and plays an important role in biological reactions. We examined the roles of arachidonic acid on the pathway of PG synthesis and osteoblast differentiation by using clone MC3T3-E1 cells.

MATERIALS AND METHODS: The effect of arachidonic acid was evaluated by the measurement of alkaline phosphatase activity, cells shape, production of arachidonic acid and the expression of cyclooxygenase (COX). **RESULTS:** Arachidonic acid dose dependently decreased alkaline phosphatase activity and increased PGE₂ production in MC3T3-E1 cells. The cell shape changed from polygonal to fibroblastic following treatment with arachidonic acid. These effects were recovered by the treatment of NS-398 and indomethacin. Arachidonic acid increased the expression of COX-2 mRNA and the PGE₂ production. The exogenous arachidonic acid induced the release of cellular arachidonic acid in MC3T3-E1 cells. Moreover, methylarachidonyl fluorophosphonate suppressed the arachidonic acid release and the expression of COX-2 mRNA.

CONCLUSION: The present results indicate that exogenous arachidonic acid stimulated the activity of PLA_2 , leading to the new release of membranous arachidonic acid. The amplified arachidonic acid enhanced PGE_2 production by COX-2, which inhibits the differentiation of MC3T3-EI cells. Our results provide a new insight into the molecular mechanisms by which exogenous arachidonic acid plays a role as a paracrine/autocrine amplifier of PGE₂ biosynthesis by coupling with PLA₂ and COX-2.

Oral Diseases (2007) 13, 32-39

Keywords: arachidonic acid; COX-2; MC 3T3-El cells; PLA₂

Introduction

Arachidonic acid, a *cis*-polyunsaturated essential fatty acid, plays important roles in biological processes such as cell growth (Peppelenbosch et al, 1995; Graber et al, 1996), chemotaxis (Siegel et al, 1982), inflammation (Irvine, 1982) and signal transduction (Axelrod et al, 1988). Arachidonic acid has also been reported to be a potent activator of several intracellular signaling kinases such as protein kinase C, extracellular signal-regulated kinases and c-Jun N-terminal kinase (McPhail et al, 1984; Rao et al, 1994; Hii et al, 1995; Cui and Douglas, 1997). Arachidonic acid is a component of membrane phospholipids and is released by phospholipase A₂ (PLA_2) from the cell membrane in response to a wide range of stimuli (Davidson and Dennis, 1990; Exton, 1994). PLA₂ regulates the production of prostaglandins (PGs) and leukotrienes (Van den Bosh, 1980) as a ratelimiting enzyme, and exogenous PLA2 increases the arachidonic acid release and PG biosynthesis (Shinohara et al, 1999). PLA₂ catalyzes the hydrolysis of membrane phospholipids at the sn-2 position to release arachidonic acid. The released arachidonic acid is converted into PGs, thromboxanes and leukotorienes by cyclooxygenases (COXs) (Vane, 1994; Otto and Smith, 1995).

Osteoblasts produce prostaglandin E_2 (PGE₂) as a major prostanoid among the several arachidonate metabolites (Rodan *et al*, 1981). PGE₂ is described as a bone resorption factor both *in vitro* and *in vivo* (Klein and Raisz, 1970). However, bone-forming activity of PGE₂ was also demonstrated in some reports (Jee *et al*, 1985; Nagata *et al*, 1994). MC3T3-E1 cells, a mouse osteoblastic cell line, produce only PGE₂ as arachidonic acid metabolites (Yokota *et al*, 1986). In MC3T3-E1 cells, exogenous PGE₂ induces both stimulatory and inhibitory effects on cell growth and osteoblastic differentiation depending on the concentrations (Hakeda

Correspondence: Kaya Yoshida, Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto, Tokushima 770-8504, Japan. Tel: 81 88 633 7322, Fax: 81 88 633 7342, E-mail: kaya@dent.tokushima-u.ac.jp

Received 18 November 2005; revised 12 December 2005; accepted 22 December 2005

et al, 1985). Recently, the presence of multiple PGE_2 receptors was clarified and their differences were associated with the multiple actions of PGE_2 in osteoblasts (Farndale *et al*, 1988; Muallem *et al*, 1989; Hagel-Bradway *et al*, 1991; Suzawa *et al*, 2000).

Although the PGE_2 action has been focused upon bone tissues, there are few reports about arachidonic acid release and its concerning enzymes in bone tissues. In the present study, we investigated the effects of arachidonic acid on the expression of bone metabolic markers and examined the effects of exogenous arachidonic acid on the pathway of cytosolic phospholipase A_2 and COXs in MC3T3-E1 cells.

Materials and methods

Materials

Alfa-Modified Eagle's minimum essential medium (α -MEM) was obtained from ICN Biosciences (Aurora, OH, USA) and fetal bovine serum (FBS) from Wako Pure Chemicals (Osaka, Japan). Arachidonic acid was purchased from Sigma Chemical Co. (St Louis, MO, USA). NS-398, indomethacin, methylarachidonyl fluor-ophosphonate (MAFP) and STAT-Prostaglandin E₂ Enzyme Immunoassay Kit were from Cayman (Ann Arbor, MI, USA); TRIZOL reagents were from Invitrogen (Carlsbad, CA, USA). Hybond-N + membrane, [5,6,8,9,11,12,14,15-³H] arachidonic acid and [³²P] dCPT were from Amersham Life Science (Little Chalfont, UK). DNA-labeling kit was from Takara (Kyoto, Japan). All other materials used were commercial products of the highest grade available.

Cell culture

MC3T3-E1 (Sudo *et al*, 1983), 3.0×10^5 cells, were suspended in α -MEM containing 10% FBS and 100 units ml⁻¹ of penicillin G and plated in 90-mm plastic dishes. Cultures were maintained at 37°C in a humidified atmosphere consisting of 5% CO₂ in air. The medium was changed every 2 days. After confluence, cells were plated at 6200 cells per cm² in a 35-mm culture dish and maintained for 7 days under the same condition.

Determination of alkaline phosphatase activity

For the assay of alkaline phosphatase (ALP) activity, cells were cultured for 7 days and then incubated for 24 h with or without arachidonic acid. After the incubation, cells were washed in phosphate-buffered saline (PBS), scraped in ice-cold 50 mM Tris–HCl buffer (pH 7.4) and sonicated twice for 20 s, using a sonifier-cell disrupter (Model UR-20P; Tomy, Tokyo, Japan). The sonicates were vortexed for 10 min at 4°C and centrifugation was performed at 10 000 g for 10 min. ALP activity in the supernatant was then determined with *p*-nitrophenyl phosphate as a substrate according to the method of Lowry *et al* (1954).

Northern blot analysis

Total cellular RNA was extracted from cell layers by the TRIZOL reagent method indicated by the

manufacturer. Ten micrograms of RNA was separated by electrophoresis in 1% agarose gels containing 2 M formaldehyde and transferred onto nylon membranes. The cDNA probes were labeled with [³²P] dCPT using a random-primer DNA-labeling kit. Prehybridization was performed for more than 4 h at 42°C in 50% formamide $-5 \times SSPE$ [1 × SSPE: 0.18 M NaCl. 10 mM NaH₂PO₄ and 1 mM EDTA (pH 7.7)], $5 \times \text{Denhardt's solution}, 0.5\%$ sodium dodecyl sulfate (SDS) and 200 $\mu \text{g ml}^{-1}$ of salmon sperm DNA. Hybridization was performed at 42°C for 18–24 h in the same solution with 10^6 dpm ml⁻¹ of ³²P-labeled cDNA probes. The membrane was washed twice in $2 \times SSPE-0.1\%$ SDS for 20 min at 42°C. The relative radioactivity of each band was estimated using a BAS2000 imaging analyzer (Fujix, Tokyo, Japan). The mRNA levels of COX-1 and COX-2 were normalized to that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA.

Measurement of PGE₂ secretion

Aliquots of culture medium from arachidonic acidtreated cells were assayed for PGE₂ secretion using a STAT-Prostaglandin E₂ Enzyme Immunoassay Kit. This assay is based on competition between PGE₂ and a PGE₂-ALP conjugate for a limited amount of PGE₂ monoclonal antibody. Briefly, 50 μ l of culture medium was added to 96-well plates. PGE₂ in the medium bound to PGE₂-ALP conjugate and PGE₂ monoclonal antibody, and the antibody-PGE₂ complex bound to a goat anti-mouse polyclonal antibody, which was attached to the 96-well plate. The plate was washed to remove unbound reagents and then *p*-nitrophenyl phosphate was added to the wells. The product of this enzymatic reaction showed a distinct yellow color and was quantified with 405 nm using a plate reader (Bio Rad, Richmond, CA, USA).

Measurement of $[^{3}H]$ *-arachidonic acid metabolites*

Confluent cells were treated with 18.5 MBq μ l⁻¹ of [³H]arachidonic acid for 18 h. To remove the free radiolabeled arachidonic acid, which was not incorporated into cellular lipids, cells were washed three times with serum-free medium containing 0.5 mg ml^{-1} bovine serum albumin (BSA) and then treated with 100 μ M arachidonic acid for 18 h. The culture medium was assayed to measure the radioactivity of the released [³H]arachidonic acid metabolites with a liquid scintillation counter (Aloka, Tokyo, Japan). Aliquots of culture media were separated by thin-layer chromatography (TLC) in a mixture of ether/petroleum ether/acetic acid (85:15:0.1, v/v) at 4°C and the plate was heated for 1 h in an oven at 100°C. Separated arachidonic acid and PGE₂ were detected by UV and silica gels collected from the spots on the TLC plate were assayed for radioactivity with a liquid scintillation counter as described above.

Statistical analysis

Data were expressed as mean values \pm s.e.m. and were analyzed by Student's *t*-test calculations by StatView (Abacus Concept, Berkeley, CA, USA). The acceptable level of significance was P < 0.01.

Results

Effect of exogenous arachidonic acid on ALP activity and PGE₂ secretion in MC3T3-E1 cells

MC3T3-E1 cells reached confluency on day 5 after the plating. ALP activity then began to increase and became constant on days 5–12. At 7 days after confluency, MC3T3-E1 cells were treated for 24 h with various concentrations of arachidonic acid (1, 10 and 100 μ M). Figure 1A shows that arachidonic acid decreased the

Figure 1 Effects of exogenous arachidonic acid on alkaline phosphatase (ALP) activity and prostaglandin E_2 (PGE₂) secretion in MC3T3-E1 cells. MC3T3-E1 cells were plated at 6200 cells per cm² in 35-mm dishes and cultured for 7 days. (A) Various concentrations of arachidonic acid were then exposed for 24 h, followed by the determination of ALP activity and PGE₂ production. The values are mean values \pm s.e.m. from four separate samples. The experiments were performed three times and the most representative data were presented. Asterisks show significant differences from the control value (**P* < 0.05 and ***P* < 0.005). (B) The morphologic change of MC3T3-E1 cells treated without (a) or with arachidonic acid at 1 μ M (b), 10 μ M (c) and 100 μ M (d) was examined

ALP activity in a dose-dependent fashion, showing 83% and 48% of the control value at 10 and 100 μ M, respectively. Similar suppression of ALP activity was observed in the cells on day 10 after confluency (data not shown). Arachidonic acid increased the PGE₂ secretion dose dependently with maximum concentration being 100 μ M. As shown in Figure 1B, the cell shape was changed from polygonal to fibroblastic by the treatment with arachidonic acid. In the 100 μ M arachidonic acid-treated cells, most cells show fibroblastic morphology.

Effect of exogenous arachidonic acid in the presence of COX inhibitors

Before the addition of arachidonic acid, NS-398 (a specific inhibitor for COX-2) or indomethacin (an inhibitor for both COX-1 and COX-2) was pre-incubated for 30 min. As shown in Figure 2A, ALP activity which was suppressed by 100 μ M arachidonic acid treatment was completely recovered to the control level by the NS-398 and indomethacin treatments. Moreover, PGE₂ secretion stimulated by 100 μ M arachidonic acid was suppressed in accordance with the recovery of ALP activity. The morphology of the cells treated with NS-398 is shown in Figure 2B. While arachidonic acid-treated cells changed from polygonal to fibroblastic, NS-398 dose dependently recovered the cells to polygonal shape. Similar result was observed in the indomethacin-treated cultures (data not shown).

Effect of arachidonic acid on COX mRNA expression and PGE₂ secretion

The effects of 100 µM arachidonic acid on the expression of COX-1 and COX-2 mRNA were investigated (Figure 3a). The expression of COX-1 mRNA was not affected by the arachidonic acid treatment by 6 h, whereas a slight increase was detected at 12-24 h (approximately twofold). Arachidonic acid increased the expression of COX-2 mRNA in a time-dependent manner until 3 h. The maximal effect was observed at 2-3 h, showing a more than 60-fold increase, and then the expression level rapidly decreased up to 24 h. The expression level of COX-2 mRNA in control cells were consistently low during the treatment. Figure 3b shows that secretion of PGE₂ was markedly increased by the treatment with 100 μ M arachidonic acid. The marked increase of PGE2 was observed at 3-9 h after arachidonic acid treatment.

Effects of exogenous arachidonic acid on the secretion of radiolabeled arachidonate metabolites

MC3T3-E1 cells were prelabeled with [³H]-arachidonic acid to investigate the mobilization of arachidonic acid metabolites. Figure 4a shows that radiolabeled arachidonic acid metabolites were secreted to the culture medium by treatment with exogenous arachidonic acid. When the cells were treated with 100 μ M arachidonic acid, the secretion of [³H]-arachidonic acid metabolites increased in a time-dependent manner, reached a maximum at 3 h and retained at higher level until 18 h (Figure 4a). The secreted [³H]-arachidonic acid (Figure 4b)

34

Arachidonic acid action on osteoblastic cells K Yoshida et al

Figure 2 Effects of cyclooxygenase (COX) inhibitors on alkaline phosphatase (ALP) activity and prostaglandin E₂ (PGE₂) secretion in MC3T3-E1 cells. The cells were cultured for 7 days and pretreated for 30 min with 5 μ M NS-398 (NS) or 5 μ M indomethacin (Indo) before treatment with 100 μ M arachidonic acid for 24 h (AA). (A) ALP activity and PGE₂ were determined and shown as mean values \pm s.e.m. from four separate samples. The experiments were performed three times and the most representative data were presented. Asterisks show significant differences from the control value (none). **P* < 0.05 and ***P* < 0.005. (B) Morphologic change of cells treated without (a) or with 100 μ M arachidonic acid (b), pretreated for 30 min with NS-398 at 0.5 μ M (c) or 5 μ M (d) before the treatment with 100 μ M arachidonic acid

and PGE₂ (Figure 4c) by TLC. The level of $[{}^{3}H]$ arachidonic acid increased in a time-dependent manner, reached a maximum at 3 h and then decreased. After 6 h, the labeled radioactivity was not detected. Secretion of $[{}^{3}H]$ -arachidonic acid was detected as early as 5 min of exogenous arachidonic acid treatment (Figure 4b). The amount of secreted radiolabeled PGE₂ increased up to 3 h and then retained at higher level until 24 h, the profile of the secretion was similar to that of the secreted

Figure 3 Effect of exogenous arachidonic acid on cyclooxygenase (COX) mRNA and prostaglandin E_2 (PGE₂) secretion in MC3T3-E1 cells. (a) MC3T3-E1 cells were plated at 4700 cells per cm² in 90-mm dishes, cultured for 7 days and then treated with 100 μ M arachidonic acid (AA) for the indicated time points. The levels of COX-1, COX-2 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA were analyzed by Northern blot hybridization. (b) MC3T3-E1 cells were plated at 6200 cells per cm² in a 35-mm dishes, cultured for 7 days and treated with 100 μ M arachidonic acid for various times. The secretion of PGE₂ was measured as described in the Materials and methods section. The values are mean values \pm s.e.m. from four separate samples. The experiments were performed three times and the most representative data were presented

 $[{}^{3}H]$ -arachidonic acid metabolites described in Figure 4a (Figure 4c). Within 30 min, no radiolabeled PGE₂ was detected in the culture media (Figure 4c). These results indicate that within 30 min, the secreted $[{}^{3}H]$ -arachidonic acid metabolite is arachidonic acid.

Effect of inhibitors of COX and $cPLA_2$ on arachidonate mobilization

To further determine the nature of released free arachidonic acid we examined the effect of cytosolic PLA_2 (cPLA₂), which facilitates the release of arachidonic acid from cell membrane phospholipids, on the arachidonic acid release. As shown in Figure 5a, pretreatment of 35

Figure 4 Effect of exogenous arachidonic acid on secretion of radiolabeled arachidonate in MC3T3-E1 cells. (a) The cells were cultured for 7 days and radiolabeled with 18.5 MBq μ l⁻¹ of [³H]-arachidonic acid for 18 h. The cells were then untreated (open square) or treated with 100 μ M arachidonic acid (closed square) for various terms indicated and radioactivity was measured. Secreted arachidonic acid (b) and prostaglandin E₂ (PGE₂) (c) were separated by thin-layer chromatography, collected and radioactivity measured

Figure 5 Effect of cyclooxygenase (COX) and cytosolic phospholipase A₂ (cPLA₂) inhibitors on secretion of radiolabeled arachidonate in MC3T3-E1 cells. MC3T3-E1 cells were cultured for 7 days and labeled with 18.5 MBq μ ^{[-1} of [³H] arachidonic acid for 18 h. The cells were then pre-incubated with 5 μ M NS-398 (NS), 5 μ M indomethacin (Indo) or 25 μ M methylarachidonyl fluorophosphonate (MAFP) for 30 min. The cells were then treated with 100 μ M arachidonic acid for 5 min (a) or 30 min (b). The experiments were performed three times and the most representative data were presented. The values are mean values \pm s.e.m. from four separate samples. Asterisks show significant differences from the single treatment with 100 μ M arachidonic acid. *P < 0.001 and **P < 0.0001

MAFP (cPLA₂ inhibitor) completely inhibited the secretion of arachidonate metabolites within 5 min after the addition of exogenous arachidonic acid. However, this inhibition was not observed in the treatment

Figure 6 Effect of cytosolic phospholipase A_2 (cPLA₂) inhibitor on cyclooxygenase-2 (COX-2) mRNA expression in MC3T3-E1 cells. The cells were plated at 4700 cells per cm² in 90-mm dishes and cultured for 7 days, pre-incubated with 25 μ M methylarachidonyl fluorophosphonate (MAFP) or 5 μ M indomethacin (Indo) for 30 min and treated for 3 h with 100 μ M arachidonic acid (AA). The levels of COX-2 mRNA was analyzed by Northern blot hybridization

of NS-398 and indomethacin. These results indicate that arachidonate metabolites released within 5 min were free arachidonic acid. On the other hand, at 30 min after addition of arachidonic acid, all these inhibitors completely blocked the secretion of arachidonate metabolites, suggesting that free arachidonic acid produced by $cPLA_2$ was converted into PGE_2 (Figure 5b).

Effect of cPLA₂ inhibitor on COX-2 mRNA

Finally, we examined the effect of MAFP on COX-2 mRNA expression. As shown in Figure 6, the expression of COX-2 mRNA was augmented by 100 μ M arachidonic acid treatment. This effect was almost completely suppressed by MAFP as well as by indomethacin. These results indicate that COX-2 induction by exogenous arachidonic acid was dependent on cPLA₂ activity.

Discussion

In this study, we demonstrated that exogenous arachidonic acid stimulated cPLA₂ activity, and then induced new release of membranous arachidonic acid. This excessive arachidonic acid augmented the PGE₂ production through induction of COXs. Our present results suggest that arachidonic acid can regulate eicosanoids production by amplifying their own release in the first step of the arachidonic acid cascade. The exogenous arachidonic acid decreased the ALP activity and changed the cell shape from polygonal to fibroblastic. MC3T3-E1 cells are fibroblastic in the growth stage and become polygonal with multiple layers in the differentiation stage (Sudo et al, 1983). ALP activity is also detected in the early developmental stage and possibly plays a primary role in mineralization as a progression marker in osteoblastic differentiation (Beck et al, 1998; Fedde et al, 1999). Based on these findings, exogenous arachidonic acid inhibited differentiation of MC3T3-E1 cells in the present study. Moreover, ALP activity and cell shape were regulated in parallel with the production of PGE₂, and these effects were recovered by COX inhibitors which block the PGE2 production, indicating that PGE₂ closely correlates with the differentiation of osteoblasts. It was reported that PGE_2 has multiple actions in osteoblasts: bone-resorbing activity (Klein and Raisz, 1970; Kajii *et al*, 1999) and boneforming activity (Yang *et al*, 1993). This discrepancy of PGE_2 actions is thought to be mediated by subtypes of PGE receptors (EP1, EP2, EP3 and EP4) present in osteoblastic cells. It has been reported that EP1 and EP4 are detected in MC3T3-E1 cells, and EP1 agonist decreased the ALP activity and changed the cell shape to a fibroblastic appearance (Suda *et al*, 1996). Thus, the exogenous arachidonic acid should regulate the osteoblastic differentiation in the pathway downstream of EP1.

COX is an enzyme that converts arachidonic acid to the intermediate PG precursor and then regulates the PG biosynthetic pathway. Two isozymes, COX-1 and COX-2, were identified. COX-1 is constitutively expressed in several mammalian tissues (DeWitt, 1991) and COX-2 is undetectable under physiologic conditions but markedly induced by several cytokines and growth factors (Kujubu et al, 1991; O'Banion et al, 1991; Harrison et al, 1994; Kawaguchi et al, 1995; Onoe et al, 1996). In the present study, MC3T3-E1 cells slightly expressed COX-2 mRNA in the control cells at day 7 after confluency. This may be because of the presence of FBS because FBS induces the COX-2 mRNA level in MC3T3-E1 cells (Pilbeam et al, 1995). In the present study, arachidonic acid induced the new release of [³H]labeled arachidonic acid metabolites. Our results with TLC separation revealed that the early stage release of arachidonate metabolites is arachidonic acid rather than PGE₂. The release of arachidonate metabolites was also suppressed within 5 min by the inhibitor of $cPLA_2$. In contrast, COX inhibitors did not affect the release of arachidonic acid metabolites in 5 min, but blocked it in 30 min. These results indicate that the induced [³H]labeled arachidonic acid metabolites at early stage are arachidonic acid, and then COXs convert them to PGE₂ after 30 min. MC3T3-E1 cells are genetically deficient in functional type IIA cPLA₂ (Kennedy et al, 1995). Therefore, our results suggest that cPLA₂ is required for the new release of arachidonic acid induced by exogenous arachidonic acid, leading to the production of PGE₂. Interestingly, arachidonic acid could not induce the release of free arachidonic acid or the expression of COX-2 mRNA in the presence of MAFP (Figures 5 and 6). These results indicate that the induction of arachidonic acid by cPLA2 is necessary to activate the pathway downstream of arachidonic acid. Thus arachidonic acid acts as an amplifier of itself by coupling with a cPLA₂ in our model. Our results are in agreement with some reports showing that cPLA₂dependent arachidonic acid release is essential for the PGE₂ synthesis induced by IL-1 α in human fibroblasts and mouse osteoblastic cells (Lin et al, 1992; Chen et al, 1997).

In conclusion, the present study provides a new insight into the molecular mechanisms that the exogenous arachidonic acid plays a role as a paracrine/ autocrine amplifier of PGE_2 biosynthesis by coupling with cPLA₂ and COX-2.

Acknowledgements

38

We thank Dr S. Duray for his editorial assistance. We also thank Dr M. Mori for his valuable discussion. This study was supported in part by grants from the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (KY, TH, TN).

References

- Axelrod J, Burch RM, Jelsema CL (1988). Receptor-mediated activation of phospholipase A_2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers. *Trends Neurosci* **11**: 117–123.
- Beck GR, Sullivan EC, Moran E *et al* (1998). Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. *J Cell Biochem* **68**: 269–280.
- Chen QR, Miyaura C, Higashi S *et al* (1997). Activation of cytosolic phospholipase A₂ by platelet-derived growth factor is essential for cyclooxygenase-2-dependent prostaglandin E₂ synthesis in mouse osteoblasts cultured with interleukin-1. *J Biol Chem* **272**: 5952–5958.
- Cui XL, Douglas JG (1997). Arachidonic acid activates c-jun N-terminal kinase through NADPH oxidase in rabbit proximal tubular epithelial cells. *Proc Natl Acad Sci USA* 94: 3771–3776.
- Davidson FF, Dennis EA (1990). Evolutionary relationships and implications for the regulation of phospholipase A_2 from snake venom to human secreted forms. *J Mol Evol* **31**: 228–238.
- DeWitt DL (1991). Prostaglandin endoperoxide synthase: regulation of enzyme expression. *Biochim Biophys Acta* **1083**: 121–134.
- Exton JH (1994). Phosphatidylcholine breakdown and signal transduction. *Biochim Biophys Acta* **1212**: 26–42.
- Farndale RW, Sandy JR, Atkinson SJ *et al* (1988). Parathyroid hormone and prostaglandin E₂ stimulate both inositol phosphates and cyclic AMP accumulation in mouse osteoblast cultures. *Biochem J* **252**: 263–268.
- Fedde KN, Blair L, Silverstein J *et al* (1999). Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. *J Bone Miner Res* 14: 2015–2026.
- Graber MN, Alfonso A, Gill DL (1996). Ca^{2+} pools and cell growth: arachidonic acid induces recovery of cells growth-arrested by Ca^{2+} pool depletion. *J Biol Chem* **271**: 883–888.
- Hagel-Bradway S, Tatakis DN, Dziak R (1991). Prostaglandin-induced changes in calcium uptake and cAMP production in osteoblast-like cells: role of protein kinase C. *Calcif Tissue Int* **48**: 272–277.
- Hakeda Y, Nakatani Y, Hiramatsu M et al (1985). Inductive effects of prostaglandins on alkaline phosphatase in osteoblastic cells, clone MC3T3-E1. J Biochem 97: 97– 104.
- Harrison JR, Lorenzo JA, Kawaguchi H *et al* (1994). Stimulation of prostaglandin E_2 production by interleukin-1 alpha and transforming growth factor alpha in osteoblastic MC3T3-E1 cells. *J Bone Miner Res* **9**: 817– 823.
- Hii CST, Ferrante A, Edwards YS *et al* (1995). Activation of mitogen-activated protein kinase by arachidonic acid in rat liver epithelial WB cells by a protein kinase C-dependent mechanism. *J Biol Chem* **270**: 4201–4204.
- Irvine RF (1982). How is the level of free arachidonic acid controlled in mammalian cells? *Biochem J* **204**: 3–16.

- Jee WSS, Ueno K, Deng YP *et al* (1985). The effects of prostagrandin E_2 in growing rats: increased metaphyseal hard tissue and cortico-endosteal bone formation. *Calcif Tissue Int* **37**: 148–157.
- Kajii T, Suzuki K, Yoshikawa M *et al* (1999). Long-term effects of prostaglandin E_2 on the mineralization of a clonal osteoblastic cell line (MC3T3-E1). *Arch Oral Biol* **44**: 233–241.
- Kawaguchi H, Pilbeam CC, Gronowicz G et al (1995). Transcriptional induction of prostaglandin G/H synthase-2 by basic fibroblast growth factor. J Clin Invest 96: 923–930.
- Kennedy BP, Payette P, Mudgett J *et al* (1995). A natural disruption of the secretory group II phospholipase A gene in inbred mouse strains. *J Biol Chem* **270**: 22378–22385.
- Klein DC, Raisz LG (1970). Prostaglandins: stimulation of bone resorption in tissue culture. *Endocrinology* 86: 1436– 1440.
- Kujubu DA, Fletcher BS, Varnum BC *et al* (1991). TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclo-oxygenase homologue. *J Biol Chem* **266**: 12866–12872.
- Lin LL, Lin AY, DeWitt DL (1992). Interleukin-1 α induces the accumulation of cytosolic phospholipase A₂ and the release of prostaglandin E₂ in human fibroblasts. *J Biol Chem* **267**: 23451–23454.
- Lowry OH, Roberts NR, Wu ML *et al* (1954). The quantitative histochemistry of brain II enzyme measurements. *J Biol Chem* **207**: 19–37.
- McPhail LC, Clayton CC, Snyderman R (1984). A potential second messenger role for unsaturated fatty acids: activation of Ca²⁺-dependent protein kinase. *Science* **224**: 622–625.
- Muallem S, Merritt BS, Green J et al (1989). Classification of prostaglandin receptors based on coupling to signal transduction systems. *Biochem J* 263: 769–774.
- Nagata T, Kaho K, Nishikawa S *et al* (1994). Effect of prostaglandin E_2 on mineralization of bone nodules formed by fetal rat calvarial cells. *Calcif Tissue Int* **55**: 451–457.
- O'Banion MK, Sadowski HB, Winn V *et al* (1991). A serumand glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. *J Biol Chem* **266**: 23261– 23267.
- Onoe Y, Miyaura C, Kaminakayashiki T *et al* (1996). IL-13 and IL-4 inhibit bone resorption by suppressing cyclooxygenase-2-dependent prostaglandin synthesis in osteoblasts. *J Immunol* **156**: 758–764.
- Otto JC, Smith WL (1995). Prostaglandin endoperoxide synthases-1 and -2. J Lipid Mediat Cell Signal 12: 139–156.
- Peppelenbosch MP, Qiu RG, de Vries-Smits AMM et al (1995). Rac mediates growth factor-induced arachidonic acid release. Cell 81: 849–856.
- Pilbeam CC, Raisz LG, Voznesensky O *et al* (1995). Autoregulation of inducible prostaglandin G/H synthase in osteoblastic cells by prostaglandins. *J Bone Miner Res* 14: 406–414.
- Rao GN, Baas AS, Glasgow WC *et al* (1994). Activation of mitogen-activated protein kinases by arachidonic acid and its metabolites in vascular smooth muscle cells. *J Biol Chem* 269: 32586–32591.
- Rodan SB, Rodan GA, Simmons HA *et al* (1981). Bone resorptive factor produced by osteosarcoma cells with osteoblastic features is PGE₂. *Biochem Biophys Res Commun* **102:** 1358–1365.
- Shinohara H, Balboa MA, Johnson CA *et al* (1999). Regulation of delayed prostaglandin production in activated P338D₁ macrophages by group IV cytosolic and group V secretory phospholipase A₂s. *J Biol Chem* **274**: 12263– 12268.

- Siegel MI, McConnell RT, Bonser RW et al (1982). The lipoxygenase product, 5-hydroperoxy-arachidonic acid, augments chemotactic peptide-stimulated arachidonic acid release from HL60 granulocytes. Biochem Biophys Res Commun 104: 874–881.
- Suda M, Tanaka K, Natsui K et al (1996). Prostaglandin E receptor subtypes in mouse osteoblastic cell line. Endocrinology 137: 1698–1705.
- Sudo H, Kodama H, Amagai Y *et al* (1983). In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. *J Cell Biol* **96**: 191–198.
- Suzawa T, Miyaura C, Inada M *et al* (2000). The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. *Endocrinology* **141**: 1554–1559.

- Van den Bosh H (1980). Intracellular phospholipases A. *Biochim Biophys Acta* **604:** 191–246.
- Vane J (1994). Towards a better aspirin. *Nature* **367:** 215–216. Yang RS, Liu TK, Lin-Shlau SY (1993). Increased bone
- growth by local prostaglandin E2 in rats. *Calcif Tissue Int* **52:** 57–61.
- Yokota K, Kusaka M, Ohshima T *et al* (1986). Stimulation of prostaglandin E_2 synthesis in cloned osteoblastic cells of mouse (MC3T3-E1) by epidermal growth factor. *J Biol Chem* **261**: 15410–15415.

Copyright of Oral Diseases is the property of Blackwell Publishing Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.