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Peroxiredoxin I is differentially expressed in multiple
myelomas and in plasmablastic lymphomas
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BACKGROUND: Plasmablastic lymphoma (PBL) and

multiple myeloma (MM) are B cell-derived malignancies

that share many morphologic and immunophenotypic

traits, making the differential diagnosis particularly

complicated. We have recently demonstrated that per-

oxiredoxin I (PrdxI) is expressed in plasma cells but not in

B lymphocytes, suggesting that its expression is devel-

opment-associated.

AIM: To analyze PrdxI expression in PBL and in MM in

order to study its utilization as an additional diagnostic

molecular tool.

METHODS AND RESULTS: Eight cases of PBL and nine

of MM were studied by immunohistochemistry. We have

demonstrated that PrdxI expression is closely connected

with the immunoglobulin production capacity of the cells,

which means high in MM, but absent in PBL cases, except

one, wherein few cells were stained.

CONCLUSIONS: We hypothesize PrdxI as a component

of the unfolded protein response (UPR), an adaptive

pathway essential for plasma cell differentiation. As we

have not detected immunoglobulin in our PBL cases, we

suggest that UPR was not activated in the cells,

accounting for the impediment of the developmental

process, and for the inhibition of PrdxI expression ob-

served. PrdxI could be considered an additional plasma

cell functional marker and could also be speculated as a

therapeutic target in the treatment of MM.
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Introduction

Among the B-cell lineage malignancies resulting from
the proliferation of final differentiation-related cells,
multiple myeloma (MM) and plasmablastic lymphoma
(PBL) share several morphologic and immunopheno-
typic features, which makes the differential diagnosis
particularly problematic (Vega et al, 2005).

Multiple myeloma is the second most prevalent
hematological cancer. It is a multi-focal monoclonal
plasma-cell proliferation in bone marrow, manifested
by: (i) anemia and immunosuppresion, caused by loss of
normal hematopoietic stem cell function, (ii) organ
damage, because of excess monoclonal immunoglobulin
secretion, and (iii) osteolytic lesions besides hypercalce-
mia, because of detached bone metabolism (Ludwig,
2005; Hideshima et al, 2007). Clinically, this tumor
presents usually a highly malignant behavior. Bone
marrow biopsy shows an overload of plasma cells
occurring in a variable maturity range, from immature
or plasmablasts, to mature forms, indistinguishable
from normal plasma cells (Goasguen et al, 1999). These
cells frequently exhibit immunophenotypic profile of
differentiated plasma cells, including absent expression
of the B-cell marker CD20 and strong reactivity with
plasma-cell-associated antigens such as CD38, CD138,
and VS38c (Bataille et al, 2006). The most common
immunoglobulin produced is IgG, followed by IgA,
while IgD, IgE, and IgM are rare. When the plasma cell
tumor occurs as a solitary lesion, it is called plasmacy-
toma and may arise in bone or soft tissues, most
commonly of the head and neck or lungs.

Plasmablastic lymphoma was initially described as a
distinct subtype of diffuse large B-cell lymphoma,
mainly diagnosed in patients infected with the human
immunodeficiency virus (HIV), typically involving the
mucosa of the oral cavity, with highly aggressive clinical
behavior (Delecluse et al, 1997; Colomo et al, 2004;
Teruya-Feldstein, 2005). These tumors are characterized
by a predominant proliferation of immunoblasts and
plasmablasts unexpectedly exhibiting plasma cell immu-
nophenotype (Delecluse et al, 1997; Colomo et al,
2004), which complicates the differential diagnosis when
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they are compared with plasmacytomas and MMs (Vega
et al, 2005). Cellular morphology cannot define the
diagnosis as well, as the malignant cells of these tumors
present in a variable and somewhat overlapping matu-
rity range (Vega et al, 2005).

At last, the distinction between PBL and plasma cell
malignancies is prominently based on clinical correla-
tion. The detection of excess-single immunoglobulin
(M protein) in blood or excess light chains (Bence–Jones
proteins) in urine, and the description of bone lytic
lesions, hypercalcemia or anemia, favors diagnosis of
plasma cell neoplasm, while immunosuppression, espe-
cially AIDS-related, is much more frequently associated
with PBL (Colomo et al, 2004), as well as the presence
of Epstein–Barr virus (EBV) (Vega et al, 2005).

Peroxiredoxin I (PrdxI) is one of the six isoforms of
the mammalian peroxiredoxin family, a set of proteins
involved in the detoxification of peroxides and peroxy-
nitrite with reducing equivalents provided through the
thioredoxin system (Rhee et al, 1999; Hofmann et al,
2002; Wood et al, 2003). All Prdx proteins are charac-
terized by the presence of a conserved cysteine residue in
the N-terminal region, which is responsible for catalysis.
PrdxI may also function as a molecular chaperone,
preventing protein aggregation, a function achieved by
its structural switch from the dimer to a high-molecular-
weight multimer (Wood et al, 2003; Jang et al, 2004;
Moon et al, 2005; Lee et al, 2007). Prdxs have been
implicated in a range of cellular processes such as
proliferation, differentiation, and cellular signaling
(Kang et al, 2005). We have recently demonstrated that
PrdxI is expressed in the terminally differentiated
plasma cells, but not in B lymphocytes (Demasi et al,
2007), suggesting that its expression is development-
associated. In this manner, we have analyzed PrdxI
expression in neoplastic cells from PBL and MM cases.
Our results support the inclusion of PrdxI in the
antigenic profile to assist the diagnostic differentiation
between PBL and plasma cell tumors.

Materials and methods

Tissue samples
Eight cases of PBL and nine of MMwere identified from
the files of the pathology departments at the São
Leopoldo Mandic Dental Research Center and at the
University of São Paulo, Brazil. This work has been
approved by the ethical committees of the mentioned
ResearchCenters and itwas developedwith the consent of
the donating subjects. Tissue samples were available as
formalin-fixed and paraffin-embedded material. Hema-
toxylin and eosin-(H&E) stained sections were examined
and tumors were classified on the basis of their morpho-
logic features and clinical information, obtained to the
extent possible.We only included in this study the cases of
MMwhich were confirmed with subsequent clinical data.

Immunohistochemistry
Sections (4 lm) from the paraffin blocks were deparaff-
inized in xylene, rehydrated through descending ethanol
series and were submitted to heat-induced antigen

retrieval. After that, sections were immersed in 0.3%
hydrogen peroxide in methanol and incubated with
primary antibody. The antibodies used were specific for:
PrdxI (1:500) (Alexis Corp., Lausen, Switzerland),
CD20 (1:500), LCA (1:600), VS38c (1:100), IgG
(1:100), IgA (1:10), j (1:100) and k (1:80) (Dako Corp.,
Glostrup, Denmark). Peroxidase-linked secondary anti-
body and diaminobenzidine tetrahydrochloride (DAB)
(Peroxidase Envision Kit, Dako Corp., Carpinteria,
USA) were used to detect specific binding. The sections
were counterstained with hematoxylin, dehydrated, and
mounted. Digital photomicrography were obtained with
a Zeiss Axioskop 2 plus microscope equipped with
AxioCam digital camera and Axiovision application
software (Carl Zeiss, Gottingen, Germany).

Results

Eight cases of PBL and nine of MM have been studied.
Table 1 lists some clinical features of the patients. Six
(numbers 1–6) of the eight patients presenting PBL were
infected by HIV in association with EBV; in the
remaining two these infections were not determined.

All PBL cases showed similar histological features,
consisting of predominant proliferation of large lym-
phoid cells with plasmablastic traits, variable proportion
of immunoblasts, and relatively few smaller cells with
plasmacytic differentiation. The tumors displayed a
diffuse pattern of growth interspersed by macrophages,
which often gave rise to a starry sky appearance. The
nuclei were large, more or less eccentrically located,
usually with single prominent central nucleolus.

Tissue biopsies from MM patients demonstrated
neoplastic plasma cells predominantly presented in their
mature forms of small oval cells with round eccentric
nuclei, coarsely condensed chromatin, abundant baso-
philic cytoplasm, and a prominent pale perinuclear
Golgi zone. Two (patients number 5 and number 8) of
the eight cases presented a comparatively higher pro-
portion of large immature cells and were considered as
plasmablastic myelomas (Vega et al, 2005).

The results of immunophenotypic analyses are sum-
marized in Table 1. All the cases studied, including PBL
and MM, displayed homogeneous reactivity to the B cell
differentiation classic markers, negative for CD20 and
LCA and, positive for VS38c. In contrast, intracyto-
plasmic IgG expression was detected exclusively in the
MM cases. IgA was not detected in any of the cases.
Monotypic light chain staining was also demonstrated in
all the MM cases, but only in one (patient number 2) of
the PBL.

Outstandingly, PrdxI expression was closely associ-
ated with immunoglobulin production capacity, even
when only light chains were perceived. All MM cases,
including those considered as plasmablastic on histo-
logical grounds, were positive for PrdxI, with a cell
staining proportion higher than 85% (Figure 1,
Table 1). In opposition, all the PBL cases were
uniformly negative for this protein and the few cells
presenting plasmacytic differentiation were still nega-
tive for PrdxI (Figure 1). However, in one PBL case

Peroxiredoxin I expression in plasma cell tumors
APD Demasi et al

Oral Diseases

742



(patient number 2) a reduced number of cells were
stained with anti-PrdxI, which is <30% against
>85% in MM. Intriguingly, light chains were also
detected in this same case, still presenting prominent
plasmablastic cellular morphology. Expression of
PrdxI was, in addition, observed in the macrophages
interspersed among the tumor cells in the majority of
the PBL cases (Figure 1). This observation was in
agreement with previous demonstrations (Ishii et al,
1993) and also provided a positive control of the
antibody reactivity.

Discussion

In this study, we have demonstrated that PrdxI is
expressed in neoplastic cells from MM, but not in those
from PBL. Our PBL cases were all positive for VS38c
and negative for CD20 and LCA. These results are in
accordance with Vega et al (2005) and also with
Delecluse et al (1997). Even in the cases where cellular
morphology could raise the most doubtful diagnosis,
such as in the plasmablastic myeloma cases, PrdxI
expression revealed the actual differentiation stage of the

(a) (b)

(c) (d)

(e) (f)

Figure 1 PrdxI expression in multiple myeloma and in plasmablastic lymphoma (PBL) cases and their morphology. (a, b) Plasmablastic myeloma.
(a) Large immature cells with features of plasmablasts are distributed among the predominant plasmacytic cells (H&E). (b) Staining with PrdxI-
specific antibody, positive for neoplastic cells. (c, d) Plasmacytic myeloma. (c) The tumor cells have prominent plasmacytic differentiation (H&E).
(d) Staining with PrdxI-specific antibody, positive for neoplastic cells. (e, f) PBL. (e) Diffuse infiltrate of large lymphoid cells with plasmablastic
traits interspersed by macrophages (H&E). (f) Starry sky-like staining with PrdxI-specific antibody, negative for neoplastic cells, positive for
macrophages. Original magnifications for all sections: ·400
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proliferating cells. Remarkably, the detectability of
cytoplasmic immunoglobulin resembled that of PrdxI,
strengthening the relationship between PrdxI and
immunoglobulin production previously suggested by
us (Demasi et al, 2007).

Because MM cells produce large amounts of mono-
clonal immunoglobulin that must be processed within
the endoplasmic reticulum (ER), it has been recognized
that these cells are under chronic ER stress (Shapiro-
Shelef and Calame, 2004; Nakamura et al, 2006). The
ER is responsible for glycosylation, disulfide bond
formation, folding, and assembly of newly-synthesized
secretory proteins. Overload of these functions results in
accumulation of unfolded proteins, a condition referred
to as ER stress, which can lead to cell death (Cenci and
Sitia, 2007). Cells respond to such stress by activating
adaptive pathways collectively termed the unfolded
protein response (UPR), which promotes protein trans-
lation attenuation, induction of chaperones to increase
the folding capacity, and induction of ER-associated
degradation components to prevent the aggregation of
accumulating misfolded proteins (Szegezdi et al, 2006).

Recent genome-wide studies demonstrated that the
UPR also comprises antioxidant and DNA repair
enzymes (Shaffer et al, 2004; Acosta-Alvear et al,
2007), probably to neutralize the reactive oxygen species
(ROS) generated as byproducts of the oxidative protein
folding (Tu and Weissman, 2004; Benham, 2005; Gross
et al, 2006). Sustained ER stress was reported to cause
prolonged UPR activation and subsequent accumulation
of ROS both in yeast and in mammalian cells (Harding
et al, 2003; Haynes et al, 2004). In addition, it was
proposed an ER consumption of glutathione to the
direct reduction of unstable and improper disulfide
bonds (Cuozzo and Kaiser, 1999). The combination of
ROS generation and glutathione depletion synergisti-
cally increases the potential of oxidative cellular damage.

It was shown that activation of UPR promotes
survival of myeloma cells (Nakamura et al, 2006). These
cells constitutively express high levels of UPR survival
components, including the ER resident chaperones
GRP78 and GRP94 (Obeng et al, 2006). The expression
of PrdxI in MM cells could be explained in view of
PrdxI as an UPR component, functioning in the
elimination of the potentially damaging by-products of
disulfide bond formation, or as a chaperone preventing
protein aggregation. PrdxI could be even more signif-
icant taking into account that its redox cycling does not
depend on glutathione but on the thioredoxin system as
source of reducing equivalents. Indeed, it was demon-
strated that TSA1, which encodes the yeast homolog of
PrdxI is up-regulated by the yeast UPR in a pathway
that has been evolutionarily conserved in higher eukary-
otes with few modifications (Kimata et al, 2006). The
existence of ER stress and UPR in PBL cells is largely
unknown, but lack of immunoglobulin production
capacity may imply their absence.

The transcription factor X-box binding protein 1
(XBP-1) is a major UPR regulator and it is also in
charge of the overall B-cell transformation that accom-
panies plasmacytic differentiation (Reimold et al, 2001;
Iwakoshi et al, 2003; Shaffer et al, 2004). XBP-1 acti-
vation is subject to alternative RNA processing by
IRE1, an ER-resident kinase and endoribonuclease,
resulting in a spliced transcript designated XBP-1s,
which is more stable and possesses enhanced transacti-
vation potential (Reimold et al, 2001; Iwakoshi et al,
2003; Shaffer et al, 2004). It has been demonstrated that
IRE1 activation in plasma cells and the consequent
production of XBP-1s is dependent on biosynthesis and
accumulation of unfolded immunoglobulin, imposing
that the UPR is an essential component of plasma cell
differentiation to support huge level of antibody pro-
duction (Iwakoshi et al, 2003). XBP-1 deficient B cells

Table 1 Clinical and immunophenotypic features of multiple myeloma cases (patients 1–9) and of PBL cases (patients 10–17)

Patient no Localization Age (years) Sex CD20 LCA VS38c j k IgG IgA PrdxI

Multiple myeloma
1 Mandible 65 F ) ) + + ) + ) +
2 Mandible 60 F ) ) + + ) + ) +
3 Hard palate 26 F ) ) + ) + + ) +
4 Mandible 56 F ) ) + + ) + ) +
5 Mandible 56 F ) ) + ) + + ) +
6 Skull 68 F ) ) + ) + + ) +
7 Mandible 58 F ) ) + ) + + ) +
8 Pterygomandibular region 73 M ) ) + ) + + ) +
9 Mandible 66 M ) ) + ) + + ) +

PBL
10 Mandibular gingiva 41 M ) ) + ) ) ) ) )
11 Gingiva 49 M ) ) + ) +a ) ) +a

12 Nasal mucosa 09 M ) ) + ) ) ) ) )
13 Mandibular gingiva 40 M ) ) + ) ) ) ) )
14 Mandibular gingiva 40 M ) ) + ) ) ) ) )
15 Mandibular gingiva 49 F ) ) + ) ) ) ) )
16 Maxillary gingiva 40 M ) ) + ) ) ) ) )
17 Mandibular gingiva 54 M ) ) + ) ) ) ) )

+, expression of the antigen (more than 85% of the cells); ), absence of expression of the antigen; PBL, plasmablastic lymphoma.
aExpression of the antigen in less than 30% of the cells.
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from chimeric mice are less differentiated, displaying a
severe defect in the generation of plasma cells and
impairment in the production of immunoglobulin of all
isotypes (Reimold et al, 2001).

Abundant XBP-1 expression has been detected in
human MM cells (Munshi et al, 2004; Carrasco et al,
2007). Utilizing a transgenic mouse model, Carrasco
et al demonstrated that enforced XBP-1s expression in
the B cell compartment enhanced B cell proliferative
potential and led to the development of MM disease
possessing many molecular, cellular, and clinical fea-
tures similar to those in humans. Thus, chronically
increased levels of XBP-1 could undesirably be involved
in MM pathogenesis (Carrasco et al, 2007). On the
other hand, inhibiting XBP-1 genetically in myeloma
cells could sensitize them to ER stress-induced apoptosis
(Lee et al, 2003). So far, no study has investigated XBP-
1 expression in PBL cells.

Shaffer et al (2004), using human Lymphochip cDNA
microarrays, identified a peroxiredoxin family member
gene, PRDX4, as a gene up-regulated by ectopic
expression of XBP-1s in human mature B cell line Raji.
The corresponding PRDX1 cDNA sequence was not
present in the Lymphochip used. Anyway, PRDX1 do
possesses the XBP-1 binding sequence ACGT (Kanem-
oto et al, 2005) in its promoter, which is an indicator of
its regulation by this transcription factor.

Considering the phenotypic similarities between XBP-
1 deficient and PBL cells and the lack of immunoglob-
ulin observed in our PBL cases, we could speculate that
absence of UPR and defective XBP-1 activation could
account for the impediment of the developmental
process, as well as for the inhibition of PrdxI expression
observed in the PBL cells. Moreover, expression of
SDC1, encoding syndecan-1 (CD 138), does not require
XBP-1 (Shaffer et al, 2004), consistent with the detec-
tion of this antigen in PBL cells. Although some studies
have demonstrated occasional immunoglobulin detec-
tion in PBL cases (Delecluse et al, 1997; Colomo et al,
2004), we suggest that these outlier cases could have
intermediate characteristics and could represent distinct
clinical entities. In fact, excess M protein in blood, or
excess Bence–Jones proteins in urine are clinical features
much more related to MM, than to PBL. Further
studies are necessary to confirm all these speculations.

Our results propose PrdxI as an additional plasma cell
functional marker which frequently indicates not only
the synthesis of immunoglobulin but also the stress
caused by this acquired specialized function at the very
final stage of this process. It was suggested that
myeloma cells are inherently sensitive to proteasome
inhibitors, shown to block the IRE1-XBP-1 pathway
and induce apoptosis (Obeng et al, 2006, Lee et al, 2003,
Koong et al, 2006). Likewise, it has been demonstrated
that myeloma cells are also more susceptible to chemo-
therapeutic agents known to induce oxidative stress,
including imexon (Dvorakova et al, 2000), motexafin
gadolinium (Evens et al, 2005), arsenic trioxide (Miller
et al, 2002), and chaetocin (Isham et al, 2007). Thus, the
inhibition of either the expression or the activity of
PrdxI combined with existing cytotoxic agents known to

induce ER and ⁄or oxidative stress, might be considered
as a new therapeutic strategy to treat MM. In fact,
targeting Prdxs has been suggested as a promising
approach to treat different kinds of malignancies (Chen
et al, 2002, Wang et al, 2005, Zhang et al, 2005, Kang
et al, 2005, Chen et al, 2006, Neumann and Fang, 2007).
In conclusion, our observations suggest that PrdxI,
besides as an additional plasma cell marker, could also
be considered as a therapeutic target.
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