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Unexpected roles for bone marrow stromal cells
(or MSCs): a real promise for cellular, but not replacement,
therapy
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Adult and embryonic stem cells have drawn a lot of

attention in the last decade as new tools in regenerative

medicine. A variety of such cells have been discovered

and put forward as candidates for use in cell replacement

therapy. Investigators hope that some, if not all, of our

organs can be replaced or restored to function; that new

livers, kidneys, and brain cells can be produced. Many

reviews have already been written about stem cells and

their potential use in regenerating tissues. In this study,

we would like to call attention to a different application of

a special group of adult stem cells, the stromal cells in the

bone marrow (also called mesenchymal stem cells or

MSCs). These cells have been discovered to modulate

immune function. They can easily be expanded in culture

and surprisingly, they also seem not to be immunogenic.

Thus, they can be removed from donors, expanded,

stored in freezers, and used as allogeneic transplants in a

variety of diseases in everyday medicine.
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Stem cell research started with the realization that bone
marrow (BM) contains cells that can replenish and
continuously maintain the immune system and blood
cells of a compromised recipient. This led to the
application of BM transplants in certain diseases and
radiation accidents in the early 1950s in Europe. As stem
cells could not be isolated at that time, all of the cells in
BM aspirates were administered to patients simulta-
neously (Thomas et al, 1957; Urso and Congdon, 1957).
In his first report of six cases, Thomas described the
results of giving marrow cells from unrelated donors.
Although four of the patients died, there were surpris-
ingly few immunological complications. The medical
community did not have a deep understanding of

human leucocyte antigen (HLA) compatibility at the
time, and as a result, many of the early transplants
failed. A BM transplant between identical twins guar-
antees complete HLA compatibility between donor and
recipient. These were the first successful transplants in
humans. It was not until the 1960s that physicians knew
enough about HLA compatibility to perform trans-
plants between siblings who were not identical twins. In
1973, a team of physicians performed the first unrelated
BM transplant. Now that stem cells can be isolated from
peripheral blood following a treatment that significantly
increases the number of circulating HSCs, stem cell
transplantation has replaced BM transplantation.
Recent trials, however, have renewed the interest in
BM transplantation and its possible advantages over
stem cell transplants. To understand the difference
between purified stem cells mobilized from marrow,
and whole BM samples, it was important to characterize
the various cells in BM. Friedenstein reported almost
35 years ago that there is a population of fibroblast-like
precursor cells among the hematopoietic cells in the
marrow. The former cells could be cultured, formed
colonies, and could differentiate into bone, cartilage or
adipose tissue. An ex vivo assay for examining the
clonogenic potential of these multipotent stromal cells –
named colony-forming unit-fibroblasts (CFU-F) – was
described in the 1970s by Friedenstein et al, (1976, 1974).
Since then a vast amount of data surfaced regarding
these cells, but as of today there is still no one marker
that can be used to characterize or select them in
humans or any other species. To summarize these data,
one has to grapple with the following problems:

1. Nomenclature: Friedenstein called these cells CFU-F
based on their feature of forming colonies from single
cells that originated in the BM. This name did not
catch on, and when one attempts to find articles in the
literature on the subject, it soon becomes obvious that
there is confusion about the nomenclature of stromal
stem cells. The cells have been called mesenchymal
stem cells (MSCs), but the mesenchyme is an
embryonic tissue that gives rise to hematopoietic cells.
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As far as we know today, the fibroblastoid cells do not
do this. Bone marrow stromal cell (BMSC) might be a
more appropriate name for the unit-fibroblasts, but
these cells are defined by their adherence to the plate (as
opposed to the non-adherent hematopoietic cells) and
are a mixed population of cells (Bianco et al, 2006;
Keating, 2006; Phinney, 2002, 2007; Phinney and
Prockop, 2007). Multipotent stem cells appear to
comprise a small fraction of the whole adherent
population. For the sake of simplicity, in this review
we will use the term MSCs and will only talk about
those of BM origin. We would like to mention the fact
that cells similar to MSCs have now been found in
almost all tissues studied and have also been tested for
their immunomodulatory and regenerative properties
(Vayssade andNagel, 2009; Garcia-Castro et al, 2008).

2. Culture conditions: After they are harvested from the
marrow, MSCs are separated on the basis of their
adherence to plastic, and then grown for a variety of
passages before they are used. When using mouse
BM, one must be very careful first to remove the
macrophages. This is not commonly mentioned in
published methods, but unless it is performed, effects
seen in studies of �MSCs’ in vitro can be difficult to
interpret. This is usually not a problem with human
cells.
Below we try to summarize the actions of MSCs that

have convinced us and others that they may have
important roles to play as cellular therapeutics.

Classical role of MSCs

Since their discovery, the BM stromal cells (MSCs) were
considered the �wet nurses’ of the hematopoietic system:
they support proliferation and self-renewal of the
hematopoietic cells. This hypothesis was supported by
the facts that they �cradle’ the islets of hematopoietic
cells in the marrow, and synthesize and secrete growth
factors ⁄ cytokines that promote hematopoiesis (Maloney
and Patt, 1975; Patt and Maloney, 1972). During the
last decade, however, MSCs were found to have other
actions; in both humans and animals, they appear to
modulate the function and character of cells of the
immune system. We will briefly summarize the evidence
for this below.

Immunomodulatory characteristics of MSCs

Before much was known about the mechanisms respon-
sible for the immunomodulatory effects of MSCs, Le
Blanc et al (2004) used MSCs successfully to combat
graft vs host disease. They did this because they had
observed that MSCs suppress T cell proliferation (Le
Blanc et al, 2003). In the last 5 years, a good deal more
has been learned about how MSCs affect the functions
of a variety of immune cell populations. Because of
space limitations, we cannot describe the primary data
in detail. Instead, we have tried below to summarize the
results and point the reader at good, comprehensive
reviews for further details.

MSCs affect T cells
The first population of immune cells shown to be
regulated by MSCs was the T cells. Di Nicola et al
(2002) used human MSCs in mixed lymphocytic reac-
tions and observed a 60–90% reduction in T cell
proliferation in the presence of autologous as well as
allogeneic MSCs. They suggested that factors secreted
by the MSCs act on T cells but do not cause their
apoptosis. Bartholomew et al (2002) studied skin-graft
in baboons. Following MSC treatment, there was an
altered immunological response to the grafts and pro-
longed graft survival due to reduced T cell proliferation.
Tse et al (2003) reported that MSCs actively suppressed
the proliferation of responder peripheral blood mono-
nuclear cells (PBMCs) stimulated by third-party alloge-
neic PBMCs, and the proliferation of T cells stimulated
by anti-CD3 and anti-CD28 antibodies. They stated that
these suppressive effects could not be accounted for by
the production of interleukin (IL)-10, transforming
growth factor-beta1 or prostaglandin E2 by the MSCs,
or by depletion of tryptophan from the culture medium.

MSC interactions with B cells
It has been known for some time that B cell differen-
tiation requires the proximity of stromal cells (Kierney
and Dorshkind, 1987). In a 2006 study, Corcione et al
(2006) isolated hMSCs from BM and co-cultured them
with B cells purified from the peripheral blood of
healthy donors. They found that hMSCs inhibit B cell
differentiation as demonstrated by a significant decrease
in immunoglobulin (Ig)M, IgG and IgA production.
They suggested that soluble factors produced by the
MSCs might be responsible for the effect; but this
remains to be determined. Similar results were observed
when mouse MSCs and B cells were co-cultured.
Unknown factor(s) released by MSCs appeared to exert
a suppressive effect on B cell terminal differentiation
(Tabera et al, 2008; Asari et al, 2009).

MSC interactions with dendritic cells (DC) and natural
killer (NK) cells
Aggarwal and Pittenger (2005) co-cultured hMSCs with
purified subpopulations of immune cells and reported
that hMSCs altered the cytokine secretion profile of
dendritic cells (DCs), naive and effector T cells (T helper
1 [Th1] and Th2), and natural killer (NK) cells, and
induced a more anti-inflammatory phenotype. Further-
more, MSCs blocked the differentiation and migration
of DCs (Li et al, 2008; Jung et al, 2007; Jiang et al,
2005; English et al, 2008) and impaired their ability to
present antigens (Ramasamy et al, 2007a). Human
MSCs also altered NK cytokine secretion and the
cytotoxic effects of the cells on HLA-I expressing targets
(Sotiropoulou et al, 2006).

Testing the effects of MSCs in vivo
When MSCs had been shown to affect the functions of a
variety of immune cells, workers in the field began to
examine their actions in whole animals. Members of a
number of groups studied MSCs in disease models
(Table 1) and tried to determine whether the cells could
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alter the courses of diseases associated with immune
dysfunction. Several investigators (Uccelli et al, 2008;
Nasef et al, 2008; Jones and McTaggart, 2008; Sotiro-
poulou and Papamichail, 2007; Nauta and Fibbe, 2007)
have written excellent reviews on this subject. We
provide a synopsis of recent experiments below.

Immune system related disorders

Cancer treatment
The discovery of the immunoregulatory effects of MSCs
raised the question of their possible effect on tumor
growth. There is no clear consensus about the answer to
this question. Both inhibition and stimulation of tumor
cell proliferation in vitro and ⁄ or tumor growth in vivo by
MSCs have been reported. A number of studies have
shown that MSCs exhibit potent antiproliferative
activity on tumor cells (Ramasamy et al., 2007b,
Khakoo et al, 2006). On the other hand, Ame-Thomas
et al (2007) found that MSCs recruit primary follicular
lymphoma cells and trigger their differentiation into
fibroblastic reticular cells, which have a survival advan-
tage. MSCs also increased the metastatic potential of
otherwise weakly metastatic breast cancer cells when
mixed together before implantation (Karnoub et al,
2007). In addition, MSCs stimulated the growth of
tumors following subcutaneous injection of B16 mela-
noma cells in allogeneic recipients (Djouad et al, 2003).

Diabetes
As Type I diabetes is an autoimmune disease, using
immunosupressive cells (MSCs) to inhibit the progres-
sion of the condition was a reasonable idea (see Abdi
et al, 2008). Injected MSCs were shown to improve
diabetes in pigs (Chang et al, 2008), as well as in non-
obese diabetic mice, where MSCs were demonstrated to
induce regulatory T cells to produce IL-10 and to inhibit
the migration of autoreactive T cells into the pancreas
(Madec et al, 2009).

Peritonitis ⁄ sepsis
Sepsis is a very complicated and frequently lethal disease
with no cure in sight. The greatest medical challenge in

sepsis is to inhibit the unbridled innate immune response
that damages organs in the first phase of the disorder,
without contributing to the immune paralysis that occurs
later on. The biphasic character of the disease makes it
especially hard to treat. Ringden and his coworkers tested
allogeneic MSCs in 10 patients who – following BM
transplants – developed severe infections (hemorrhagic
cystitis, pneumomediastinum, perforated colon and peri-
tonitis). One person with an antibiotic-resistant infection
appeared to have been saved by this therapy (Ringden
et al, 2007). Subsequently, Nemeth et al (2009) have
demonstrated the beneficial effect of intravenously
injected MSCs using cecal ligation and puncture in a
mouse model of peritonitis and sepsis. The authors
suggest that secretion of prostaglandin E2 by MSCs re-
programs macrophages, decreasing their production of
pro-inflammatory cytokines and increasing their produc-
tion of anti-inflammatory (IL-10) ones. The authors also
conclude that a cell-to-cell contact between MSCs and
macrophages is necessary for the effect to take place.

Disorders characterized by organ damage and
failure

Several organs can develop inflammatory disease, fol-
lowed by fibrosis. Ultimately, this can cause organ
failure and death. If the initial inflammation could be
kept under control or the fibrotic changes could be
prevented or reversed, patients could have a longer and
better life.

Heart
The first report of the use of MSCs to repair heart
damage suggested that the cells differentiate into
cardiomyocytes (Orlic et al, 2001). This conclusion was
subsequently debated. Most follow-up studies provided
evidence that MSCs have beneficial effects on damaged
hearts, but not the conclusion that they give rise to new
heart tissue (Psaltis et al, 2008).

Imanishi et al (2008) found MSC transplantation to
be useful following acute myocardial infarctions.
Although the MSCs disappeared quickly, they seemed
to trigger beneficial effect on the heart by releasing

Table 1 Articles using MSCs in a variety of disease models

Immune system related disorders
Tumor ⁄ cancer Ramasamy et al (2007b); Djouad et al (2003); Ame-Thomas et al (2007); Khakoo et al (2006);

Karnoub et al (2007)
Diabetes Madec et al (2009); Vija et al (2009); Dong et al (2008); Chang et al (2008); Abdi et al (2008)
Rheumatoid arthritis Inoue et al (2007); Augello et al (2007); Jones et al (2009); Chen and Tuan (2008); Zheng et al (2008);

van Laar and Tyndall (2006)
Autoimmune encephalitis (EAE) Zappia et al (2005); Gerdoni et al (2007); Rafei et al (2009); Lu et al (2009); Kassis et al (2008)
Skin-graft rejection Aksu et al (2008); Sbano et al (2008); Bartholomew et al (2009)
Peritonitis ⁄ sepsis Ringden et al (2007); Nemeth et al (2009); Gonzalez-Rey et al (2009)

Organ failure related disorders
Heart Orlic et al (2001); Mirotsou et al (2007); Casiraghi et al (2008); Psaltis et al (2008); Imanishi et al (2008)
Lung Gupta et al (2007); Ortiz et al (2007); Iyer et al (2009); Erokhin et al (2008); Zhao et al (2008);

Iyer and Rojas (2008); Yan et al (2007); Kanki-Horimoto et al (2006); Ortiz et al (2003)
Kidney Togel et al (2005); Humphreys and Bonventre (2008); Crop et al (2009); Cavaglieri et al (2009);

Behr et al (2009)
Liver van Poll et al (2008); Parekkadan et al (2007a,b); Carvalho et al (2008); Abdel Aziz et al (2007)

MSC, mesenchymal stem cells
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vascular endothelial growth factor (VEGF). The
increase in survival and decrease in the apoptosis of
cardiomyocytes after ischemic injury were also
suggested to be due to paracrine effects (Mirotsou et al,
2007). Finally, following allogeneic heart transplanta-
tion in mice, MSCs were found to increase immune
tolerance by the expansion of donor-specific regulatory
T cells (Casiraghi et al, 2008).

Lung
Mesenchymal stem cells were shown to home into the
lungs of mice (Ortiz et al, 2003) and rats (Zhao et al,
2008) that were treated with bleomycin, and to reduce
inflammation and collagen deposition there. The
authors propose that this effect is mediated by the
MSCs, which are a major source of an IL1 receptor
antagonist and inhibit macrophage-derived tumour
necrosis factor (TNF)a production by macrophages
(Ortiz et al, 2007). Similar results were observed when
an intratracheal administration of endotoxin was fol-
lowed by MSC administration 4 h later. The MSCs
decreased pulmonary edema and increased survival
of mice by decreasing pro-inflammatory (TNFa) cyto-
kine production by macrophages and increasing
anti-inflammatory (IL-10) cytokine levels in the plasma
(Gupta et al, 2007). There has been one publication
describing the use of autologous MSCs in 27 patients
with multi-drug resistant tuberculosis, 16 of them being
followed for up to 2 years. After MSC administration,
the authors reported a positive clinical outcome in all
cases to a varying degree. Bacterial discharge stopped in
20 patients 3–4 months after treatment and the resolu-
tion of sustained lung tissue cavities was observed in 11
patients (Erokhin et al, 2008). A more comprehensive
review of the possible uses of MSCs in lung injury has
been published recently (Iyer et al, 2009).

Kidney
As kidney failure leading to death is commonly seen in
patients with severe infections, improvement of kidney
function has been an early target in the MSC field. In an
ischemia-reperfusion model of acute kidney injury,
intracarotid administration of MSCs significantly
improved renal function by reducing the production of
pro-inflammatory (IL1b, TNFa, interferon-c, and induc-
ible nitric oxide) and increasing the production of anti-
inflammatory factors (IL-10, bovine fibroblast growth
factor, and TGFa) (Togel et al, 2005) and VEGF (Togel
et al, 2008) in the kidney. Subcapsular injection of MSCs
in a rat model of kidney injury (partial nephrectomy) had
a protective effect and significantly improved kidney
function (Cavaglieri et al, 2009). In an ovine model of
bilateral renal ischemia and reperfusion, sheep were
injected autologous MSCs and the authors found no
improvement of kidney parenchyma or any difference in
cell death or cytokine release (Behr et al, 2009).

Liver
Liver damage is another common cause of death in
infections or following chronic exposure to toxins.
Carbon tetrachloride is generally used tomimic the latter.

It induces liver fibrosis. In this model (i.e. Carbon
tetrachloride induced fibrosis), intravenous injection of
MSCs had a significant antifibrotic effect in rats (Abdel
Aziz et al, 2007) although not confirmed in one sub-
sequent study (Carvalho et al, 2008) and a similar effect
together with an improvement of liver function in mice
(Sakaida et al, 2004). MSCs were later demonstrated to
affect the function and IL-6 production of stellate cells,
inhibiting collagen synthesis. MSC-produced hepatocyte
growth factor improved the survival of hepatocytes by
decreasing apoptosis (Parekkadan et al, 2007a).
Similarly, in D-galactosamine-induced fulminant hepatic
failure, MSCs reduced leukocytic infiltrates and hepato-
cellular death. In this study, MSC-derived conditioned
medium was shown to divert adoptively transferred
leukocytes from the injured organ, suggesting that a
change in leukocyte migrationmight be the reason for the
absence of immune cells in liver tissue following treatment
(Parekkadan et al, 2007b; van Poll et al, 2008). A recent
review summarizes the use of MSCs in liver diseases
(Dai et al, 2009).

Based on all the data we know so far, the MSCs are a
unique population of cells that holds great promise in
future therapy in many different fields of medicine.MSCs
seem to work as biosensors. Depending on cues in their
environment, they may be able to direct other immune
cells to mountmore beneficial responses in situations that
are harmful to the host. MSC administration appears to
have no deleterious side effects, and the cells may be
�smarter’ and more specific in their actions than system-
ically administered drugs. Their uniqueness is further
exemplified by the observation that they can be used
without HLA typing – thus promising to be a �universal
donor’ in cell therapy. Before we can start using them
though, we still need to understand the details of their
mechanism of action and the reasons for the contradic-
tory results in the literature. If their promise holds, the use
of adult stem cells could open an exciting new chapter in
the history of medicine and many future patients will
greatly benefit from their use.
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