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A growing number of articles are emerging in the medi-

cal and statistics literature that describe epidemiologic

and statistical flaws of research studies. Many examples of

these deficiencies are encountered in the oral, craniofa-

cial, and dental literature. However, only a handful of

methodologic articles have been published in the oral

literature warning investigators of potential errors that

may arise early in the study and that can irreparably bias

the final results. In this study, we briefly review some of

the most common pitfalls that our team of epidemiolo-

gists and statisticians has identified during the review of

submitted or published manuscripts and research grant

applications. We use practical examples from the oral

medicine and dental literature to illustrate potential

shortcomings in the design and analysis of research

studies, and how these deficiencies may affect the results

and their interpretation. A good study design is essential,

because errors in the analysis can be corrected if the

design was sound, but flaws in study design can lead to

data that are not salvageable. We recommend consul-

tation with an epidemiologist or a statistician during the

planning phase of a research study to optimize study

efficiency, minimize potential sources of bias, and docu-

ment the analytic plan.
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Introduction

In 2006, oral medicine experts from across the globe
gathered in San Juan, Puerto Rico, for one of the largest
meetings in oral medicine history, the Fourth World
Workshop on Oral Medicine. After 2 years of prepara-
tion and systematic reviews of hundreds of published
oral medicine articles, the review teams met to reach a
final consensus and develop management recommenda-
tions for 10 selected clinical conditions (Baccaglini
et al, 2007a,b). At that time, the review teams also
reached another consensus: that the overall poor quality
of published oral medicine studies had hindered the
successful development of strong evidence-based clinical
recommendations.

Since that time, there has been an outpouring of
review articles and commentaries in medical, epidemi-
ologic, and statistical journals outlining the urgent need
for careful execution and reporting of medical research
studies. General guidelines for the reporting of
observational studies (strengthening the reporting of
observational studies in epidemiology; http://www.
strobe-statement.org/) and clinical trials (Consolidated
Standards of Reporting Trials; http://www.consort-
statement.org/) have been published in and adopted by
scientific journals (Vandenbroucke et al, 2007) and
disseminated through a global network (Enhancing the
QUAlity and Transparency Of health Research
Network; Moher et al, 2008). These guidelines can
contribute to improve the reporting of medical research
studies (Kane et al, 2007; Vandenbroucke et al, 2007),
although they should not be viewed as rigid prescrip-
tions (Rothman and Poole, 2007).

Oral medicine clinicians and researchers may not have
been exposed to such guidelines, due in part to the lack
of methodologic articles appearing in journals most
frequently read by dentists and oral medicine practitio-
ners and investigators. Furthermore, guidelines for
reporting studies may be misconstrued as applying only
to the publication phase rather than to the planning
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phase, which is problematic because many weaknesses
cannot be rectified if the data collection is already
underway or has been completed.

To raise awareness about the intricacy of oral
medicine research methodology, we have gathered a
small team of epidemiologists, statisticians, informati-
cians, dentists, and oral medicine experts to present
some of the most commonly encountered methodologic
and reporting issues in oral medicine studies. To avoid
drawing rigid chronologic timelines and to stress the
need for investigators to have a global understanding of
the study from its onset, we have chosen to address the
conduct and reporting of research studies simulta-
neously.

For convenience of exposition, our commentary is
divided into three broad areas, corresponding to the
primary sections of a manuscript: methods (with con-
siderations related to design, sample size, data entry and
management, and statistical analyses), results, and
discussion. This division is not meant to imply that the
sections are independent of one another. In an actual
study, methods, results, and discussion should be highly
integrated.

Our commentary is not intended as a recipe for how
to conduct and report oral medicine studies, but as a
distillation of our collective experience as journal,
abstract and grant application reviewers, researchers,
and instructors.

Methods

Pitfalls in the implementation and reporting of research
methodology may occur during study design, sample
size calculations, data management, and statistical
analyses.

Study design
In a well-planned study, investigators typically first
formulate a clearly defined research question and then
carefully choose the design and analyses that are most
suitable to answer their question. Even when a specific
research question is not explicitly formulated before
data collection, such as in large national surveys, the
research questions likely to be of interest should be
considered so that data collected will enable investiga-
tors to answer these and similar research questions
through secondary statistical analyses. During the
planning stage, consultation with an epidemiologist or
statistician is desirable, because study design affects
subsequent statistical analyses and defines what infer-
ences can be made. Failure to recognize this link can
lead to disappointment in the analysis and publication
phases.

Threats to study validity include selection bias,
information bias, and confounding. Within these three
large and partially overlapping categories, different
types of specific biases can be recognized (Jacob, 2002;
Delgado-Rodriguez and Llorca, 2004). Investigators
should be fully familiar with potential biases that may
affect their study and should identify strategies to
minimize these biases during the planning stage and

before beginning data collection. Two common causes
of selection bias in oral medicine studies are improper
selection of a comparison group and loss of data.

When designing (and publishing) their studies, inves-
tigators should always specify the characteristics of the
source population from which the samples are drawn
and the recruitment methods used, so that potential
sources of bias during participants’ selection may be
identified. In general, eligibility criteria should be
applied evenly to the groups being compared. For
example, in a study of oral bacteria in which 100% of
cases and only 58% of controls are females (Goodson
et al, 2009), the gender imbalance can have profound
effects on the study results, because gender is linked to a
variety of factors, including health habits, which
may affect the oral micro-environment and microbial
composition.

Investigators are often interested in the effect of a
treatment or an exposure. For this objective, the
strongest studies are generally those that assess out-
comes in participants randomly assigned to either a
treatment or a control group. The least desirable study
designs are case reports and case series with no
comparison group. Studies lacking a contemporaneous,
randomly selected comparison group cannot exclude the
possibility that observed changes were because of
natural disease progression or regression over time
rather than because of the treatment or other exposure
of interest. This possibility is of particular concern if the
more severe cases of an inherently varying condition
were chosen for the study, because improvement may be
related to the well-known regression to the mean
phenomenon.

In some cases, selection bias is introduced by the
investigator intentionally. For example, in a case–
control study, the investigator may select a control
group matched to cases by 5-year age groups. Although
matching of treatment and control subjects in a trial
improves comparability and reduces the occurrence of
bias in the comparison of outcomes, matching of
controls to cases actually introduces bias unless the
analysis adjusts for the matching factors (Rothman and
Greenland, 1998). Selection bias introduced by match-
ing is a frequently overlooked source of bias. Thus,
investigators should always report how matching was
performed and how the matching factors were treated in
the analysis. Of note, caliper matching, e.g., selecting the
comparison group by ±5 years of age or by a fixed
number of standard deviations, is inferior to matching
within fixed categories (Rothman and Greenland, 1998).

Missing data can be a source of error. In dental
research, a frequent cause of missing data is missing
teeth (Slade and Caplan, 1999). Depending on the
pattern of missing data and on how they are handled,
missing data can introduce both random and systematic
error. Both parameter estimates (e.g., relative risk, odds
ratios, or mean values) and statistical inference [confi-
dence intervals (CI), P-values] may be affected.

Additional sources of missing data are attrition (when
participants withdraw from a study or become unavail-
able for other reasons) and skipping of questionnaire
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items. Bias can also be introduced when potential
participants are lost through self-selection (a more
subtle type of participants’ loss that occurs during
recruitment) or are deleted from an analysis data set
because data are missing for some variables (i.e., during
complete case analyses). Missing data can sometimes be
avoided by checking for missing questionnaire items
while the participant is still in the clinic or by collecting
the minimum amount of data necessary to answer the
study questions, thereby reducing participants’ fatigue.
Collecting too many data fields will lower the data
quality of the key data fields, and hence every data item
collected should undergo rigorous review to confirm
that it is needed. A large proportion of missing data,
unless the data are missing completely at random (i.e.,
the pattern of missingness is not related to observed or
unobserved values of the variables of interest), can
threaten the validity of the study. Depending on the
missing data pattern assumptions, special analytical
techniques, such as multiple imputation, can be used to
partially reduce the bias after the data have already been
collected, although even the most educated guess of a
missing value contains some degree of uncertainty.
Multiple imputation is preferable over single imputa-
tion, because it takes some of the uncertainty into
account by increasing the final standard error estimates.

Information bias may occur when the variables of
interest are misclassified by the study participant or the
investigator. For example, in a study comparing two
treatments applied to the right and left side of the
tongue in patients with bilateral oral hairy leukoplakia,
the examiner who measures the size of the lesion after
treatment could be influenced in its evaluation if he or
she knew which treatment was used on which side and
had a pre-existing belief about which treatment was
more efficacious.

Whenever possible, investigators should incorporate
techniques in their study design that tend to minimize
information bias, such as masking and calibration.
Masking (also known as blinding) can reduce undue
influences that occur in participants, examiners, labora-
tory personnel, and statistical analysts when they are
aware of certain information. However, masking does
not predictably reduce information bias. In typical
settings, it directs information toward the null, possibly
at the expense of increasing the bias.

Calibration of investigators and equipment reduces
systematic differences in measurement that tend to occur
across different research sites or over time. Investigators
should also explicitly and specifically define the variables
of interest (outcome, exposure, and covariates) to reduce
misclassification, avoid �cherry picking’, and allow repli-
cation of the study by other investigators. In oral
medicine drug studies, for example, investigators should
record (and report) the concentration of the drug used,
number of applications and exact method of application,
and should clearly define measures of improvement.

Confounding is the mixing of effects of certain
�extraneous’ variables (confounders) with the potential
effect of the treatment or other main exposure of
interest. For example, if older individuals have more

amalgam restorations and also a higher prevalence of
chronic neurologic conditions, such as multiple sclerosis
(MS) than do younger individuals, age differences could
confound a comparison of amalgam restorations among
patients with MS to amalgam restorations in controls.
If participants of various ages are included in the study
and age is ignored in the analysis (e.g., the investigators
report only a crude odds ratio), the odds ratio for MS
with respect to amalgam restorations will be higher than
if the analysis was conditioned on (controlled for) age.

A number of techniques can be used at both the
design and analysis stages to reduce the effects of
confounders. At the design stage, investigators can use
restriction, randomization, and matching. Investigators
should carefully consider advantages and disadvantages
of each technique when selecting the most appropriate
design.

Restriction is simply the exclusion of certain catego-
ries of participants from a study. For example, if all
participants of a study are females, there cannot be
confounding by gender, but also nothing can be learned
about males or gender differences. Randomization is the
assignment of a treatment by a method (e.g., computer-
generated random number) that on average enhances
comparability of groups at baseline. In contrast to other
methods of dealing with confounding, randomization
reduces confounding from unknown factors as well as
known ones. Randomization should be used whenever
possible, because it greatly strengthens inferences that
can be made. The specific methods used for randomi-
zation and corresponding features that may be required
in the statistical analysis should be reported. Matching is
widely used in oral medicine research, especially in case–
control studies. One of the most common misconcep-
tions is that the function of matching in case–control
studies is to control confounding. While matching can
control confounding in some circumstances in cohort
studies, simple calculations demonstrate that this does
not occur in case–control studies (Rothman and Green-
land, 1998). However, matching by confounders to
improve precision can be advisable in both kinds of
designs. Investigators should carefully consider poten-
tial disadvantages of matching. One disadvantage is the
increased time and expense required to find an appro-
priately matched comparison group, especially when
using multiple matching factors or exact matching to a
specific value of a variable rather than to a range of
values for that variable. Frequency matching, accom-
panied by a stratified analysis, is an excellent way to
match subjects and avoid the difficulties inherent in
implementing individual matching.

Another disadvantage of matching (in a case–control
study) is the inability to study the effects of the matching
factors in the analysis (e.g., the effects of age can no
longer be analyzed in a case–control study matched by
age), unless randomized control recruitment is used or
the relative control-sampling probabilities are otherwise
known (Weinberg and Sandler, 1991).

In addition to considering the use of the above
techniques to minimize confounding, investigators
should also ensure that data on remaining important
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possible confounders are collected for subsequent ana-
lyses. Analysis of covariance (ANCOVA) and multiple
regression are examples of techniques that allow an
investigator to control for confounders analytically,
provided that these covariates are selected in advance
and are few in number. An underutilized and useful way
to determine if data should be collected on certain
variables to control confounding and other biases is to
draw graphs (directed acyclic graphs; DAGs) that
illustrate the expected biologic relationship among
different variables (Merchant and Pitiphat, 2002; Shrier
and Platt, 2008). DAGs are particularly helpful when
selecting potential risk factors or confounders for a
multi-factorial disease or behavior (Chattopadhyay
et al, 2003; Baccaglini et al, 2006). Variables identified
through DAGs as advisable conditioning variables are
then used in restriction, matching, stratification, and
statistical adjustment. However, effect measure modifi-
ers (i.e., variables that modify the strength of association
between the exposure of interest and the disease) are not
visualized by traditional DAGs and these variables
should be identified separately (VanderWeele and
Robins, 2007).

It is critically important, as part of a good study
design, to fully document the analytic plan and have it
peer reviewed before collecting any study data. This
practice provides protection against reviewers who ask
investigators to re-analyze the study in a different way
after the manuscript has been submitted for publication.

Sample size
During study design, power and precision calculations
are performed to determine the number of participants
needed for the study or to work backward to determine
the power for a given study size. Oral medicine studies
frequently have missing or insufficient statistical power
and precision or use incorrect sample size calculations.

Missing or insufficient statistical power or precision
occurs in the following scenarios:

(1) Investigators do not report power or precision
calculations when a justification for the sample size
used in the study is appropriate, such as in
hypothesis testing.

(2) During planning, the investigators have not con-
sidered whether the sample size is too small to have
made a study worth conducting.

(3) Investigators do not report the number of com-
parisons when all three of the following conditions
are present: (a) the results of all the comparisons
are not reported (which they should be); (b) the
analysis consists of Neyman–Pearson hypothesis
testing; and (c) one wishes to control the studywise
type I error probability.

Four scenarios are frequently encountered in oral
medicine studies in which power and precision calcula-
tions are incorrect:

(1) Sample size analyses do not take into account the
potential for missing or misclassified data. This
typically occurs in longitudinal studies if sample size

analyses are based on the number of participants at
the beginning of the study and not on the final
sample size after attrition (loss to follow-up).
Incomplete data collection, such as unanswered
questionnaire items or missing laboratory results,
can also reduce the precision of a study. Addition-
ally, misclassified data can lower the power of a
study by reducing observed differences between
groups, or raise it by increasing those differences.
The effects of missing and misclassified data extend
beyond sample size calculations, because bias may
be introduced simultaneously.

(2) The initial sample size calculations are based on
analysis plans that differ from those performed at
the end of the study. The power is usually overes-
timated if it is based on continuous variables and the
analysis is categorical (e.g., high ⁄medium ⁄ low,
positive ⁄ negative), and usually underestimated if it
is based on categorical variables that are analyzed as
continuous.

(3) The power and precision analyses do not correspond
to the underlying biologic model. For example, this
occurs in power calculations for genetic studies that
incorrectly use the minor allele frequency instead of
the genotype prevalence as the exposure prevalence
(Altshuler et al, 2008). As humans carry two alleles
(one for each chromosome) at each locus, if 30% of
the chromosomes are expected to have a polymor-
phism (or mutation) at that particular locus, then
only 9% of the population will be considered
exposed under a recessive inheritance model, and
51% will be considered exposed under a dominant
model.

(4) Failure to take into account the multivariate nature
of a hypothesis. The analysis and power calculation
must be multivariate to control studywise error for
the hypothesis if the outcome of a study question is
multivariate, if null hypothesis testing is to be
performed and if the investigator desired to control
the studywise type I error probability.

Data entry and management
Common pitfalls in the conduct and reporting of data
entry and data management procedures in oral medicine
studies include:

(1) Lack of a basic description of the data entry and
data management methodology. The type and
frequency of data transfer has an impact on the
degree of expected error. For example, double data
entry, especially if performed by different operators,
detects more data entry errors and is preferable to
single data entry, although the former procedure is
more costly and time consuming. Whenever possi-
ble, investigators should minimize the number of
manual data transfers and should report the meth-
ods used. Direct data entry using programs that
minimize invalid entries is helpful. Data fields
should also be calculated directly by computer
cross-field calculations wherever possible, rather
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than be manually calculated and entered. For
example, body mass index should be machine
calculated from height and weight by a coded
algorithm in the data entry program or statistical
software program and not be calculated and entered
by hand. Investigators should also always maintain
a copy of the original data set and a detailed record
of any changes made and who made the entry or
change. Ideally, those records should be generated
automatically each time the data set is modified.

(2) Selectively removing certain data points �after the
fact’, such as excluding patients that develop clinical
disease in a study of the effects of treatments on
Candida counts, should be avoided. In this scenario,
a treatment may appear to be more effective once all
the participants that develop clinical Candidiasis are
deleted from the data set (Patel et al, 2008). Another
procedure to avoid is the removal of outliers after
the final analyses followed by re-analysis of the data,
even though the outliers were identified during data
management and deemed to be within the range of
plausible values. To ensure that these decisions are
not influenced by one’s knowledge of the results, the
data manager should identify and discuss out-
of-range, impossible or implausible values with the
scientist before the final statistical analyses.
Removal of these values should have a strong
justification, because this procedure can create bias,
or replace one bias (information bias) with another
(selection bias). Investigators often have good pilot
data to decide at the design phase how best to treat
the data (log transformation vs rank methods
vs ordinary parametric analysis, with or without a
Satterthwaite correction for unequal variance; Shus-
ter, 2009).

(3) Excessive use of categorization, often based on
arbitrary cut-off points. A common practice is to
transform a continuous variable into a binary
variable. Sole reliance on this procedure makes
biologic interpretations more difficult (this is espe-
cially true when multiple heterogeneous groups are
grouped together), it reduces statistical power by
throwing away information, it can lead to residual
confounding, and it also inhibits the investigator’s
ability to observe a dose-response relationship
(Royston et al, 2006). Continuous and categorical
analyses should be carried out in concert to take
advantage of their dovetailing strengths and limita-
tions.

Statistical analyses
Pitfalls in performing and reporting statistical analyses
are very common. Statistical analyses may be missing,
excessive or incorrect. The most frequent scenarios
related to missing or incomplete statistical analyses
include:

(1) No statistical analyses were conducted, even though
it would have been possible and informative to
perform them. This includes, for example, not
reporting intent-to-treat analyses when indicated

(e.g., in a randomized trial in which we are studying
risk) or stating that an association is present or
stronger in one subgroup and absent or weaker in
another subgroup without conducting the necessary
analysis to measure or test the difference.

(2) Missing basic univariate analyses, such as descrip-
tion of demographic characteristics of the sample, so
that it is not clear to whom the results may be
generalizable.

(3) Reporting or performing only crude bivariate ana-
lyses in the presence of strong confounders, such as
in the amalgam and MS example (Young, 2007), or
in the presence of effect measure modifiers (inter-
actions).

(4) Reporting adjusted results without specifying the
covariates used for adjustment or the method used
to select the covariates for inclusion in the model
(Groenwold et al, 2008).

Excessive use of statistical analyses occurs in the
following scenarios:

(1) The investigators perform multiple analyses beyond
those originally planned and do not label them as
exploratory.

(2) Using multiple pairwise tests instead of an overall
test to compare multiple groups when a conclusion
or inference is drawn about the ensemble of
hypotheses and the investigator chooses to control
the studywise type I error probability. For example,
this occurs when using multiple individual t-tests
instead of (a) an overall error controlled multiple
comparison (e.g. Tukey’s test or Bonferroni correc-
tion) or (b) an F test followed by post hoc
comparisons if the overall test is significant.

(3) Statistically comparing randomized groups at base-
line ‘‘to see if the randomization worked’’. This
consideration is also applicable to observational
studies.

Descriptive analyses (typically reported in the first
table of a trial or observational study report) should
not include P-values, null hypothesis tests, estimated
associations, or CI for those estimates (Vanden-
broucke et al, 2007). There are a number of reasons
for not performing these tests, including: (a) the study
was not designed (and may not be powered) to
conduct these tests; (b) the variables tested may not
have prognostic importance; (c) we are not testing if
the variables are important and (d) if multiple tests
are performed, a few will likely turn out positive by
chance, regardless of the number of participants in the
study (Altman, 1984).

The incorrect choice of statistical analyses is one of
the most common flaws of oral medicine studies. This
primarily occurs when the analyses do not fully relate to
the hypothesis or the study design.

Ignoring the underlying study design during statistical
analyses is a very serious and frequent problem. An
especially common problem is the use of statistical tests
that assume data independence (such as unpaired t-tests,
logistic regression, ANOVA and chi-square) when data
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are not independent, such as in study designs that use
matching, repeated measures, and clustered sampling.
This may occur in analyses of any kind of study,
including trials and other cohort studies. Examples of
typical analysis errors include:

(1) Using an unpaired t-test when comparing two
topical treatments applied to the right or left sides
of the tongue or two periodontal surgeries per-
formed on the maxillary and mandibular quadrants
of the same patient. In these cases, the inappropri-
ate use of the unpaired t-test rather than an
analysis that takes into account the paired design
(Lesaffre et al, 2007) makes the conclusions
conservative.

(2) Cases and controls are matched by gender and age,
and then chi-square tests that ignore matching are
used in the analyses. As noted above, matching in
case–control studies introduces selection bias that
requires adjustment for the matching factor in the
analysis phase.

(3) Data from multiple visits are compared by using an
ANOVA or multiple unpaired t-tests.

(4) Analyzing duplicate or triplicate measurements
performed during one experiment as if they were
from separate experiments. This often occurs
during laboratory analyses, where repeated mea-
surements are often used to improve precision.

(5) Analyzing surveys employing complex sampling
designs as if data were from a simple random
sample, e.g., incorrectly assuming that all persons
in the US had an equal probability of being
selected for a national survey conducted with
multistage sampling. Nationally representative
samples, such as the National Health and Nutrition
Examination Survey (NHANES), are typically
selected by using a multistage clustered stratified
design with oversampling that requires complex
statistical analyses, such as generalized linear
models (Caplan et al, 1999). Failure to account
for the complex design, for example by using
standard t-tests or chi-square tests, leads to incor-
rect results. If clustering is ignored, standard errors
will be underestimated, leading to narrower CI and
smaller P-values. If sample weights are ignored,
both parameter estimates and standard errors will
be incorrect.

(6) Analyzing multiple teeth from the same patient as
if they were from different patients. Teeth from the
same patient are not independent, because they are
exposed to similar risk factors (e.g., diet or genet-
ics).

(7) Analyzing multiple histologic sections taken from
the same tooth or oral lesion as if they were from
different patients (Epstein et al, 2003).

(8) Analyzing data collected from multiple members of
the same family or from students in the same
classroom as if the family members and students
were unrelated biologically or environmentally.
Investigators should also be aware that multiple
levels of clustering may occur. For example,

analyses of schoolchildren conducted in different
schools should take into account clustering of
students within a classroom and clustering of
classrooms within a school. In laboratory research,
clustering effects may occur when animals live in
the same cage.

(9) Analyzing a survey of dental practice-based net-
works that include a variable number of dentists
within each practice as if all dental practitioners
worked in a solo practice, i.e., ignoring clustering
of dentists within the same office when analyzing
the data at the dentist level.

(10) Estimating an odds ratio for a variable used in
matching for a case–control study.

(11) Performing multiple-testing adjustments that
assume test independence when the tests are not
independent.

Lastly, there is considerable debate as to whether in
hypothesis-driven research one should or should not
lock in their statistical methods at the design stage. One
argument in favor of choosing a robust method and
locking in the statistical methods at the design stage is
that, when the statistical analysis plan is changed based
on diagnostic testing for assumptions after the data have
been collected, both the power and type I error
properties of a test become unpredictable because the
errors of the diagnostic tests would need to be incorpo-
rated into the global errors structure (Shuster, 2005).
A frequent reason for changing the statistical plan at the
end of the study is the presence of outliers. For example,
investigators may change a two-sample t-test into a
Wilcoxon test when data or residuals are not normally
distributed. However, even in this case, certain strategies
can be followed to prepare for potential outliers at the
design stage, rather than changing the analysis plan
(Shuster, 2009).

Results

When preparing the results section of a manuscript,
investigators should ensure that results are complete,
correct, and consistent. Common examples of missing or
incomplete results include:

(1) Not reporting measures of variability of the data,
especially standard deviations that accompany mean
values or quartiles that accompany medians.

(2) Selectively reporting results based on significance,
i.e., omitting results that are not statistically signif-
icant (Rifai et al, 2008).

(3) Reporting only conclusions or highly condensed
summaries of analytic results (e.g., significant ⁄ not
significant). Reporting only P-values also compli-
cates the clinical and biologic interpretation of the
study results, because P-values depend on sample
size. Thus, a small (or large) P-value could reflect the
large (or small) size of a study rather than a
clinically meaningful difference (Young, 2007). For
this reason, many journals prefer or require authors
to report CI for key comparisons (Altman, 2005).
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(4) Not reporting failure to achieve planned accrual.
Often, papers simply report the results without
acknowledging the low accrual, and its implica-
tions. If this happens, the study still needs to be
reported. If the reason can be documented as not
being based on an interim analysis of the study
question, then the bias will be minimal. Condi-
tional power calculations can be made to assess
what the results might have been if indeed the
study had been run to completion. In any case, the
reasons for failure to complete the accrual should
be completely disclosed.

Confusion of definitions when interpreting results is
also common. The three more frequently misinterpreted
statistical terms are risk ratios, correlations, and P-value
or CI. Examples include:

(1) Interpreting incidence odds, prevalence, prevalence
odds, rates, and hazards as if they were equivalent to
measuring �risk’ (Slade and Caplan, 1999; Katz,
2006). For example, if investigators measure the
prevalence of a very common outcome, such as
seropositivity to herpes simplex virus type 1, in older
vs younger individuals and find that the prevalence
odds ratio is equal to two (POR = 2), it would be
incorrect to conclude that older individuals have
double the risk (or double the prevalence) of
seropositivity than younger individuals or that they
are twice as likely to be seropositive. First, risk
cannot be estimated directly in a cross-sectional
study, so investigators could have more appropri-
ately chosen to calculate prevalence ratios (PR),
being careful not to interpret them as risk ratios
(RR). Secondly, odds and risks are calculated
differently: �risk’ is the probability of an event (P),
whereas �odds’ is the probability of an event divided
by the probability of that event not occurring
(P ⁄ 1 ) P). For this reason, odds ratios will overes-
timate risk ratios (and PR, which are also ratios of
probabilities), especially for common outcomes (i.e.,
large P). Thus, in the example above, POR will
overestimate PR, which is a preferable measure less
susceptible to misinterpretation.

(2) Incorrectly interpreting the P-value as the probabil-
ity that the hypothesis is true, or interpreting a CI as
having a 95% chance or confidence that the true
estimate lays within that interval (Poole, 2001).

(3) Using the terms association and correlation as if
they were synonymous. Correlation is a specific type
of association, but not all associations are correla-
tions.

Inconsistencies in reporting are often due to lack of
attention to details. The most common examples
include:

(1) Percentages do not add up to 100% after accounting
for rounding error.

(2) Counts divided by the total do not correspond to
correct percentages. For example: �Of 20 cases, five
(21%) were positive to herpes simplex virus anti-
bodies’.

(3) Results in the text and tables do not match.
(4) Categories are not mutually exclusive (e.g., age

categories 0–5, 5–10, and 10–15).
(5) Inadvisable and inconsistent rounding, such as

variable, excessive or insufficient use of significant
digits.

Discussion

The most common pitfall of the discussion (and
conclusion) section is the over-interpretation of the
results, such as conclusively claiming that there is an
association, that there is no association or that there is
or is not a cause–effect relation.

Conclusively claiming that there is no association is
virtually never a correct statement and it is particularly
inappropriate when sample size is small or when the
conclusion is based solely on hypothesis testing from a
single study. CI can pin down the set of �plausible
outcomes’. In any case, except for bioequivalence
research, a non-significant result is virtually always
equated to an inconclusive result, not to a �no difference’
result.

Conclusively claiming that there is an association is
particularly inappropriate when based on a single study
in which multiple analyses were performed using the
same outcome. This may occur in analyses of micro-
array data and genome-wide studies where the number
of analyses can reach several hundred to millions. As the
number of analyses increases, the number of false
positive associations also increases.

Asserting that there is or is not an effect is stronger
than the claim of a positive (or negative) association,
because there can be an association without a cause–
effect relationship, and there can be an absence of
association or an absence of statistical significance when
there is a cause–effect relationship. No design is capable
of showing unequivocally that there is a cause–effect
relationship, although all studies contribute to the
scientific basis for assessing that relationship, with the
greatest contribution provided by adequately powered,
well-designed randomized clinical trials.

Claims of the presence or absence of a cause–effect
relation are especially misleading when they are based
only on the study at hand and not on the totality of the
scientific evidence (Poole et al, 2003). Investigators
should carefully consider their choice of words in the
discussion section, to avoid drawing conclusions that are
not supported by the study results. For example, the use
of the words �deterioration’ or �improvement’ that imply
the observation of an event over time should not be used
when progression over time cannot be measured, i.e., if
the study is not longitudinal. An �increase’ or a
�decrease’ can also only be observed in a longitudinal
study, where at least two measurements are made at two
different time points.

Lastly, the discussion and conclusion sections should
not be used to defend a seriously flawed design or
analysis. Minor limitations that could not be completely
addressed should be pointed out to the readers, but
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major limitations should be addressed directly in the
design and analyses rather than acknowledged �after the
fact’, when the study has already been completed.

Summary

Oral medicine studies require very careful planning prior
to implementation. Design flaws incorporated at the
beginning of a study can irreparably damage the validity
of the final results. Statistical analyses should be
consistent with the research question and design scheme.
Results should be presented properly and interpreted
cautiously. Investigators with clinical and laboratory
expertise but with minimal to no formal or informal
statistical background should consider consulting a
statistician or an epidemiologist early during the study
design phase and before the data are collected. Early
discussions among different team members are more
likely to identify the most efficient and least biased study
design and the most appropriate statistical analyses.

In this article, we have presented a review of some of
the potential pitfalls that should be considered during
these early discussions and throughout the study. This
review is not meant to be used as a comprehensive
checklist for all oral medicine research studies, but it
represents the consensus of our team at this specific
point in time, on what are some of the most commonly
encountered pitfalls of research studies that have been
proposed are in progress, or have already been com-
pleted and submitted for publication (Rothman and
Poole, 2007).

Acknowledgements

This work was partially supported by grants M01RR00082
and U54RR025208 from the National Institute of Research
Resources, National Institutes of Health, and by grant
R21DE018714 from the National Institute of Dental and
Craniofacial Research, National Institutes of Health.

Author contributions

L Baccaglini wrote first draft, incorporated changes received
from co-authors, reviewed and modified manuscript.
JJ Shuster, J Cheng, DW Theriaque, VJ Schoenbach, SL
Tomar and C Poole reviewed and modified manuscript.

References

Altman DG (1984). A fair trial? Brit Med J 289: 336–337.
Altman DG (2005). Why we need confidence intervals. World

J Surg 29: 554–556.
Altshuler D, Daly MJ, Lander ES (2008). Genetic mapping in

human disease. Science 322: 881–888.
Baccaglini L, Schoenbach VJ, Poole C et al (2006). Associa-

tion between herpes simplex virus type 1 and Helicobacter
pylori in US adolescents. Oral Surg Oral Med Oral Pathol
Oral Radiol Endod 101: 63–69.

Baccaglini L, Atkinson JC, Patton LL, Glick M, Ficarra G,
Peterson DE (2007a). Management of oral lesions in HIV-
positive patients. Oral Surg Oral Med Oral Pathol Oral
Radiol Endod 103(Suppl. S50) e1–e23.

Baccaglini L, Brennan MT, Lockhart PB, Patton LL (2007b).
World Workshop on Oral Medicine IV: process and
methodology for systematic review and developing manage-
ment recommendations Reference manual for management
recommendations writing committees. Oral Surg Oral Med
Oral Pathol Oral Radiol Endod 103(Suppl. S3) e1–e19.

Caplan DJ, Slade GD, Gansky SA (1999). Complex sampling:
implications for data analysis. JPublicHealthDent 59: 52–59.

Chattopadhyay A, Kumar JV, Green EL (2003). The New
York State Minority Health Survey: determinants of oral
health care utilization. J Public Health Dent 63: 158–165.

Delgado-Rodriguez M, Llorca J (2004). Bias. J Epidemiol
Community Health 58: 635–641.

Epstein JB, Zhang L, Poh C, Nakamura H, Berean K, Rosin
M (2003). Increased allelic loss in toluidine blue-positive
oral premalignant lesions. Oral Surg Oral Med Oral Pathol
Oral Radiol Endod 95: 45–50.

Goodson JM, Groppo D, Halem S, Carpino E (2009). Is
obesity an oral bacterial disease? J Dent Res 88: 519–523.

Groenwold RH, Van Deursen AM, Hoes AW, Hak E (2008).
Poor quality of reporting confounding bias in observational
intervention studies: a systematic review. Ann Epidemiol 18:
746–751.

Jacob RF (2002). Bias in dental research can lead to
inappropriate treatment selection. Dent Clin North Am 46:
61–78.

Kane RL, Wang J, Garrard J (2007). Reporting in randomized
clinical trials improved after adoption of the CONSORT
statement. J Clin Epidemiol 60: 241–249.

Katz KA (2006). The (relative) risks of using odds ratios. Arch
Dermatol 142: 761–764.

Lesaffre E, Garcia Zattera MJ, Redmond C, Huber H,
Needleman I (2007). Reported methodological quality of
split-mouth studies. J Clin Periodontol 34: 756–761.

Merchant AT, Pitiphat W (2002). Directed acyclic graphs
(DAGs): an aid to assess confounding in dental research.
Community Dent Oral Epidemiol 30: 399–404.

Moher D, Simera I, Schulz KF, Hoey J, Altman DG (2008).
Helping editors, peer reviewers and authors improve the
clarity, completeness and transparency of reporting health
research. BMC Med 6: 13.

Patel M, Shackleton JA, Coogan MM, Galpin J (2008).
Antifungal effect of mouth rinses on oral Candida counts
and salivary flow in treatment-naive HIV-infected patients.
AIDS Patient Care STDS 22: 613–618.

Poole C (2001). Low P-values or narrow confidence intervals:
which are more durable? Epidemiology 12: 291–294.

Poole C, Peters U, Il’yasova D, Arab L (2003). Commentary:
this study failed? Int J Epidemiol 32: 534–535.

Rifai N, Altman DG, Bossuyt PM (2008). Reporting bias in
diagnostic and prognostic studies: time for action. Clin
Chem 54: 1101–1103.

Rothman KJ, Greenland S (1998). Matching. In: Winters R,
ed. Modern epidemiology. 2nd edn. Lippincott, Williams and
Wilkins: Philadelphia, PA, pp. 147–161.

Rothman KJ, Poole C (2007). Some guidelines on guidelines:
they should come with expiration dates. Epidemiology 18:

794–796.
Royston P, Altman DG, Sauerbrei W (2006). Dichotomizing
continuous predictors in multiple regression: a bad idea.
Stat Med 25: 127–141.

Shrier I, Platt RW (2008). Reducing bias through directed
acyclic graphs. BMC Med Res Methodol 8: 70.

Shuster JJ (2005). Diagnostics for assumptions in moderate to
large simple clinical trials: do they really help? Stat Med 24:

2431–2438.

Design and analysis in oral medicine
L Baccaglini et al

240

Oral Diseases



Shuster JJ (2009). Student t-tests for potentially abnormal
data. Stat Med 28: 2170–2184.

Slade GD, Caplan DJ (1999). Methodological issues in
longitudinal epidemiologic studies of dental caries. Commu-
nity Dent Oral Epidemiol 27: 236–248.

Vandenbroucke JP, von Elm E, Altman DG et al (2007).
Strengthening the reporting of observational studies in
epidemiology (STROBE): explanation and elaboration.
Epidemiology 18: 805–835.

VanderWeele TJ, Robins JM (2007). Directed acyclic graphs,
sufficient causes, and the properties of conditioning on a
common effect. Am J Epidemiol 166: 1096–1104.

Weinberg CR, Sandler DP (1991). Randomized recruitment in
case–control studies. Am J Epidemiol 134: 421–432.

Young J (2007). Statistical errors in medical research – a
chronic disease? Swiss Med Wkly 137: 41–43.

Design and analysis in oral medicine
L Baccaglini et al

241

Oral Diseases



Copyright of Oral Diseases is the property of Blackwell Publishing Limited and its content may not be copied

or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.


