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Anoikis mediators in oral squamous cell carcinoma
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Anoikis – apoptotic cell death triggered by loss of extra-

cellular matrix (ECM) contacts – is dysregulated in many

chronic debilitating and fatal diseases. Mechanisms ren-

dering tumor cells resistant to anoikis, although not com-

pletely understood, possess significant therapeutic

promise. In death receptor-mediated anoikis mechanisms,

focal adhesion kinase (FAK) and receptor-interacting

protein (RIP) dissociate, leading to association of RIP with

Fas, formation of the death-inducing signaling complex

(DISC), activation of caspase-3, and propagation of anoikis.

In contrast, anoikis resistance is accomplished through

constitutive activation of survival pathways that include

integrin-dependent activation of FAK and extracellular-

signal-regulated kinase (ERK). In addition, FAK and RIP

association confers anoikis resistance by inhibiting the

association of RIP with Fas and formation of the death

signaling complex, which allows cells to escape anoikis.

Up-regulation of CD44 also contributes to survival signals

and promotes anoikis resistance. This review will focus on

the roles of death receptors, prosurvival pathways, and the

molecular players involved in anoikis escalation and resis-

tance in oral squamous cell carcinoma.
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Introduction

During development and normal physiologic processes,
unwanted cells die by a process known as apoptosis.
Tissue homeostasis is achieved when the rate of mitosis
is in balance with apoptosis. When unbalanced, cells
either divide too rapidly and resist normal apoptosis,
leading to excessive cell accumulation as in cancer, or
undergo premature apoptosis, leading to a net cell loss,

as in the autoimmune diseases of pemphigus and
pemphigoid (Gniadecki, 1998).

Apoptosis resulting from loss of cell adhesion to the
extracellular matrix (ECM), or inappropriate adhesion
is defined as �anoikis’ (Figure 1) (Frisch and Francis,
1994). Malignant tumors are not self-limiting in their
growth, and capable of invading adjacent tissues and
organs, as well as metastasizing to lymph nodes and
other distant sites. Human tumor cell lines derived from
metastatic lesions are more resistant to anoikis than
tumors derived from primary oral squamous cell carci-
nomas (OSCC), and those tumor cell lines are more
anoikis resistant than primary oral keratinocytes (Swan
et al, 2003).

Oral squamous cell carcinoma, the most common
malignant neoplasm of the oral cavity, is responsible
for most deaths related to oral cancer and has a poor
5-year survival rate that has not changed in decades
(Jemal et al, 2008). Patients with OSCC are commonly
treated by radical surgical excision, resulting in signif-
icant loss of function and disfigurement, leading to a
decrease in overall quality of life. As anoikis resistance
leads to a more aggressive phenotype in cancers in
general and in OSCC (Swan et al, 2003) understanding
the processes that regulate anoikis will be paramount
to advancing novel therapeutics to improve these
stagnant statistics.

Anoikis and OSCC

Although anoikis resistance is implicated in different
human malignancies, including ovarian (Tang et al,
2010), lung (Balsara and Testa, 2002), breast (Streuli
and Gilmore, 1999), colon (Shanmugathasan and Jothy,
2000), and head and neck (Bockmuhl et al, 1997)
cancers, novel findings are emerging about the role of
anoikis in OSCC. When a tumor is confined to an organ
or tissue, surgical removal and radiation therapy have
proven effective; however, there are limited curative
treatment options currently available for patients with
metastatic disease (Garrison and Kyprianou, 2004).
Tumor cells that acquire malignant potential have
developed mechanisms to resist anoikis, allowing sur-
vival of cancer cells in systemic circulation, thereby
facilitating secondary tumor formation in distant organ
sites (Eble and Haier, 2006).

Correspondence: Yvonne L. Kapila, Department of Periodontics and
Oral Medicine, School of Dentistry, University of Michigan, Ann
Arbor, MI 48109-1078, USA. Tel: +1 734 615 2295, Fax: +1 734 763
5503, E-mail: ykapila@umich.edu
*These authors contributed equally.
Received 3 June 2010; revised 13 August 2010; accepted 10 September
2010

Oral Diseases (2011) 17, 355–361 doi:10.1111/j.1601-0825.2010.01763.x
� 2010 John Wiley & Sons A/S
All rights reserved

www.wiley.com



Emerging data indicate that multiple pathways regu-
late anoikis, whereby involvement of integrin receptors,
death receptors, adhesion molecules, and complex
signaling cascades can lead to anoikis resistance and
spread of metastatic cancer cells (Ishida et al, 2007;
Kamarajan and Kapila, 2007; Kupferman et al, 2007;
Chiarugi, 2008; Neiva et al, 2009). Anoikis-resistant
OSCC cell lines exhibit a unique karyotypic and
genotypic fingerprint that differs from that of anoikis-
sensitive OSCC cells (Kupferman et al, 2007). Knowl-
edge of these specific anoikis-resistance processes may
help in developing therapies that explicitly target met-
astatic spread, new opportunities for less invasive and
more successful treatments, and potential prognostic
markers for aggressive OSCC.

Anoikis mediators

Anoikis mediators, and thus potential anoikis targets for
therapy of aggressive OSCC, include ECM molecules,
receptors that regulate cell survival pathways, such as
integrins and proteoglycans, and cell death pathways,
such as Fas ⁄CD95, TNFR1, TNFR2, DR4, and DR5,
and their cognate signaling molecules, plus molecules
that engage in crosstalk between these two pathways.

ECM

The ECM is comprised of collagenous and non-collag-
enous proteins, proteoglycans and glycoproteins, includ-
ing laminin and fibronectin, and growth factors, and
alteration of their composition may promote cancer
development and progression (Stetler-Stevenson, 1996).
The ECM supports tissue homeostasis, is a physical
scaffold for support and anchorage of cells, and it
regulates the behavior of cells, influencing their survival,
apoptosis, anoikis, differentiation, development, migra-
tion, proliferation, shape, and function.

Of the ECM proteins, type I collagen is more effective
than fibronectin in delaying anoikis in some cell types
(Bozzo et al, 2006). Furthermore, collagens are dis-
rupted in invasive SCC, yet normal in carcinoma in situ
or oral premalignant lesions (Giannelli et al, 2001).
Matrix metalloproteinases (MMPs) can regulate OSCC
tumor cell migration, invasion, survival, and apoptosis

or anoikis presumably by degrading ECM proteins
including collagens (Kurihara et al, 2009). Thus, altered
collagen metabolism may play an important role in
anoikis regulation in OSCC.

The other major adhesive ECM proteins, laminin,
fibronectin, and tenascin have been closely linked to
anoikis regulation (Ziober et al, 2001; Zhang et al,
2004b; Dai et al, 2005; Boisvert-Adamo and Aplin,
2006; Kamarajan and Kapila, 2007; Lange et al, 2007;
Ordonez et al, 2007). Laminin-5, which is present in
normal epithelial tissues and the primary component of
the basement membrane of epithelium, is increased in
SCC (Ziober et al, 2001). Overexpression of laminin-5
correlates with increased tumor invasiveness and motil-
ity of OSCC, and this increased motility is thought to be
controlled and enhanced by a2b1 and a3b1 integrins
(Decline and Rousselle, 2001). Fibronectin is a multi-
adhesive matrix protein with domains that bind
collagen ⁄ gelatin, fibrin, and heparin and regions that
undergo alternatively splicing, which bind integrin and
proteoglycan receptors. Fragments of fibronectin
containing an alternatively spliced V region and func-
tion-perturbing point mutations in the high-affinity
heparin-binding domain disrupt cell adhesion to the
ECM and mediate invasion, motility and anoikis of
OSCC cells (Kapila et al, 1997; Kamarajan and Kapila,
2007). Laminin and fibronectin are key ECM adhesion
glycoprotein components involved in OSCC anoikis
regulation.

Integrin receptors

Integrins are alpha and beta heterodimeric receptor
complexes that connect ECM components to intracel-
lular signaling pathways. Integrins regulate cell adhe-
sion, migration, survival, and anoikis resistance by
activating complex signaling networks (Mitra et al,
2005). Integrin suppression leads to anoikis and apop-
tosis in human mammary epithelial cells (Haenssen
et al, 2010). Overexpression of integrin a4 increases
phosphorylation of its downstream mediator, focal
adhesion kinase (FAK), and suppresses anoikis in
primary fibroblasts (Joo et al, 2008). In addition,
inhibiting the b1 integrin induces anoikis in epithelial
cells (Bouchard et al, 2007). Several integrins recognize
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Figure 1 Schematic representation of anoikis vs anoikis resistance
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fibronectin and are present on the surface of OSCC cells,
including a4b1, a5b1, and avb1 (Zhang et al, 2004a).
Suppression of integrin av and its downstream phos-
phorylation of FAK and ERK induces anoikis in
human OSCC cells (Zhang et al, 2004b; Kamarajan
and Kapila, 2007). Integrin switching from avb5 to avb6
protects OSCC cells from anoikis (Janes and Watt,
2004). Furthermore, integrin avb6 and the enzyme
cyclooxygenase-2 are implicated in OSCC progression
and have been suggested as possible therapeutic targets
(Nystrom et al, 2006).

Focal adhesion kinase, a key regulator of integrin
signaling, interacts with p130cas, paxillin, talin, Src,
phosphoinositide 3-kinase, Shc, ERK, and p53 to
regulate cell survival and anoikis resistance (Kapila
et al, 1999; Janes and Watt, 2004; Shiraki et al, 2005;
Kamarajan and Kapila, 2007; Koschny et al, 2007;
Sakamoto et al, 2010). Disrupting FAK signaling and
genetic deletion of FAK induce anoikis and apoptosis in
cells (Taylor et al, 2008; Schwock et al, 2009). Further-
more, anoikis is associated with reduced levels of FAK
phosphorylation in multiple cell types including OSCC
(Frisch et al, 1996; Valentinis et al, 1998; Zhang et al,
2004b; Masuda et al, 2005; Kamarajan and Kapila,
2007; Johnson et al, 2008; Wendt et al, 2008; Noda
et al, 2009) and some cell types seem to undergo FAK-
independent anoikis (Wei et al, 2004; Diaz-Montero
et al, 2006). Conversely, FAK overexpression is present
in numerous human malignancies, including SCC, with
the degree of overexpression correlating with the mag-
nitude of aggressiveness; demonstrating a protective role
for FAK in apoptosis (Aronsohn et al, 2003; Jiang et al,
2010). FAK activates multiple signaling pathways that
may fine tune cell-type-specific phenotypes and cell
survival (Zouq et al, 2009). For example, treatment of
OSCC cells with safingol, a protein kinase C (PKC)
inhibitor, leads to a rapid decrease in FAK phosphor-
ylation, a subsequent decrease in FAK protein levels,
and anoikis; suggesting that FAK suppression via PKC
inhibition contributes to safingol-induced anoikis (Noda
et al, 2009). Emerging data from early-phase cancer
clinical trials with orally available small-molecule inhib-
itors of FAK are promising (Schultze and Fiedler,
2010). Integrin receptors and their downstream signaling
pathways, including FAK, show promise as anoikis
regulatory targets.

Proteoglycan receptors

Proteoglycan receptors also regulate cell survival and
apoptosis, and alterations in these receptors are associ-
ated with tumorigenesis (Misra et al, 2008). CD44 is a
multifunctional protein involved in cell adhesion,
migration, apoptosis, and drug resistance. CD44 is a
primary receptor for hyaluronan (HA), a major com-
ponent of the ECM, and it plays a critical role in cell
signaling and cell–ECM interactions in cancer (Ponta
et al, 2003; Hauptschein et al, 2005; Hao et al, 2010).
CD44 undergoes alternative splicing and several of its
spliced variants are associated with tumorigenesis. In
fact, expression of various CD44 protein variants

correlates with aggressive human cancers, including
head and neck SCC and breast cancer (To et al, 2010).
Overexpression of CD44 is associated with apoptotic
resistance and down regulation of CD44 is associated
with anoikis, as is the case in head and neck SCC
(Roehlecke et al, 2000; Harper et al, 2010). CD44 is also
believed to be a stem cell marker in head and neck
tumors as in other cancers (Ailles and Prince, 2009;
Harper et al, 2010). Inhibition of the proteoglycan
receptor CD44s inhibits breast cancer cell adhesion,
motility, and invasion (Afify et al, 2009). Downregula-
tion of CD44 is associated with tumor metastasis in
OSCC cells and treatment with an anti-CD44 antibody
enhances the invasive potential of OSCC cell lines (Sato
et al, 2004). Furthermore, OSCC patients demonstrat-
ing irregular staining and expression of CD44 exhibited
more advanced disease and shortened survival (Kosunen
et al, 2007). Monoclonal antibodies (BIWA 4, biva-
tuzumab) against specific CD44 isoforms have been
tested in patients with HNSCCs for potential imaging or
targeting therapy against tumors (Lyons and Jones,
2007). A clinical trial using anti-CD44v6 antibodies to
treat head and neck cancer showed promise but the
death of a patient suspended the trial (Orian-Rousseau,
2010). CD44 expression plays an important role in the
behavior of malignant tumors, and its variants may be
future targets for OSCC anoikis regulation and treat-
ment.

Another family of proteoglycan receptors of potential
significance in anoikis regulation are the syndecans as
they modulate cancer cell apoptosis and survival (Choi
et al, 2009; Shimada et al, 2009). Syndecans interact
with a number of ECM ligands including fibroblast
growth factor, vascular endothelial growth factor,
transforming growth factor-beta, epithelial growth fac-
tor, and fibronectin (Tkachenko et al, 2005). In many
cell models, overexpression of syndecans enhances cell
adhesion and migration in normal and neoplastic cells,
whereas interference with syndecan function decreases
cell migration, consequently enhancing cell spreading
(Choi et al, 2009; Khotskaya et al, 2009). Alterations in
syndecan-2 levels can also regulate cancer cell apoptosis
(Orosco et al, 2007). Like CD44, syndecans interact
with integrins and have multiple adhesion and cosignal-
ing functions, but their mechanistic contribution to
anoikis remains poorly understood. Proteoglycan recep-
tors regulate key tumorgenic functions in OSCC pro-
gression, and are therefore promising therapeutic targets
for regulation of cancer cell anoikis regulation.

Death receptors and their ligands

Apoptosis is regulated by both intrinsic and extrinsic cell
death pathways. The intrinsic pathway is mediated by
intracellular signals induced byDNAdamage or cytokine
deprivation leading to caspase activation and cell death
(Green, 2000). In the extrinsic pathway, cell surface death
receptors, such as Fas ⁄CD95, TNFR1, TNFR2, DR4,
and DR5, are characterized by the presence of a death
domain and are activated by extracellular death ligands.
Activation or oligomerization of death receptors leads

Anoikis mediators in oral squamous cell carcinoma
J Bunek et al

357

Oral Diseases



to formation of a death-inducing signaling complex
(DISC) and subsequent caspase activation that mediates
cell death (Sharma et al, 2000; Taylor et al, 2008).

Anoikis can be mediated by activation of the death
receptor pathway and caspase activation (Frisch and
Screaton, 2001). The CD95 ⁄Fas pathway has been
implicated in chemotherapy-induced tumor cell death
in a number of studies. Treatment with anticancer drugs
trigger an increase in CD95 ⁄Fas ligand (CD95 ⁄FasL)
expression, which stimulates the Fas receptor pathway
in an autocrine or paracrine manner, whereby FasL
binds its receptor (Fulda and Debatin, 2004). Fas
receptors are expressed in both normal and tumor cells,
including OSCC cells (Iwase et al, 2003; Ozoren and
El-Deiry, 2003). Up-regulation of FasL and down-
regulation of Fas expression are early and frequent
events associated with the evolution of esophageal SCC
(Gratas et al, 1998). Furthermore, Fas is expressed in
low quantities in OSCC and FasL expression correlates
negatively with the degree of differentiation and apop-
tosis in OSCC (Loro et al, 1999). OSCC cells undergo
apoptosis in response to treatment with FasL or Fas
antibody (Moers et al, 1999). Anoikis triggered by
activation of Fas pathways in OSCC could be an
important defense mechanism against tumorigenesis
(Kamarajan et al, 2010). However, these approaches
have not been applied in OSCC clinical trails (Papenfuss
et al, 2008).

Tumor necrosis factor alpha (TNF-alpha) is a mul-
tifunctional cytokine involved in apoptosis, anoikis, cell
survival, inflammation, immunity, and cell signaling
through two different death receptor subtypes, TNFR1
and TNFR2 (Simonitsch and Krupitza, 1998; Locksley
et al, 2001; Engbers-Buijtenhuijs et al, 2005). TNFR1
forms a DISC similar to Fas, involving TRADD,
FADD, and procaspase-8. Mice lacking TNFR1 and
TNFR2 are resistant to death and liver injury induced
by an anti-Fas antibody (Costelli et al, 2003). Further-
more, the cell surface receptor TNFR1 has been
detected only in small numbers in OSCC (Gupta et al,
2008).

TNF-related apoptosis-inducing ligand (TRAIL) is a
cytokine that interacts with death receptors DR4 and
DR5 to facilitate the selective elimination of malignant
cells through the induction of apoptosis (LeBlanc and
Ashkenazi, 2003; Mahmood and Shukla, 2010). DR5,
and to a lesser extent DR4, mediates anoikis in human
colorectal carcinoma cell lines (Shiraki et al, 2005;
Laguinge et al, 2008). Cancer cells are more susceptible
than normal cells to apoptosis induction by TRAIL, and
combinations of TRAIL and chemotherapeutics can act
synergistically to kill tumor cells (Koschny et al, 2007).
Primary cells from OSCC are sensitive to TRAIL, but
metastatic cell lines of OSCC are resistant to TRAIL
exposure (Noutomi et al, 2009). Therapeutic agents
targeting TRAIL and its receptors have been developed
for clinical application. TRAIL receptor agonists,
including recombinant human TRAIL and an agonistic
monoclonal antibody against DR4 and DR5, are
currently being tested in phase I and II clinical trails
(Bellail et al, 2009). These results suggest TRAIL

resistance imparts metastatic capacity to primary OSCC
tumors, and therapeutic agents targeting TRAIL hold
promise for OSCC.

Death ligands are critical for control of tissue
homeostasis and spread of primary OSCC, and apop-
tosis by death receptors is considered an important
defense mechanism against metastasis that may also be
important for anoikis resistance.

Cell survival and cell death receptor crosstalk

Receptor interacting protein (RIP), a kinase with
homology to both serine ⁄ threonine and tyrosine kinas-
es, interacts with both death receptors and FAK
survival pathways and is found in many tissues (Meylan
and Tschopp, 2005). RIP is activated and cleaved upon
treatment with TNF, Fas, or TRAIL in cell death
pathways (Kim et al, 2000). Once activated, RIP inter-
acts with both the death receptors TNFR1, TRAF2,
FADD, and TRADD, and epithelial growth factor
receptors, subsequently playing a key role in inhibiting
the activation of NF-kB, thus potentiating apoptosis
(Habib et al, 2001; Meylan and Tschopp, 2005). RIP
also contributes to TNF-induced JNK, ERK, and p38
MAPK kinase activation (Lee et al, 2003). Furthermore,
RIP seems to play a dual role, as it can bind to FAK in
human tumor cells providing a prosurvival signal, and it
can interact with Fas in cell death pathways to initiate
anoikis (Kurenova et al, 2004; Meylan and Tschopp,
2005). Therefore, RIP appears to participate in both
prosurvival and cell death pathways, and thus, could
constitute a possible target for modulating OSCC
anoikis resistance. Indeed, RIP was recently found to
mediate crosstalk between the Fas ⁄CD95 death receptor
and integrin ⁄FAK signaling pathways in regulating
anoikis. Under anoikis conditions, RIP forms a complex
with Fas while dissociating from FAK, whereas under
survival conditions, it dissociates from Fas and com-
plexes with FAK. RIP is a key shuttling protein that
communicates with both integrin ⁄FAK survival signals
and Fas ⁄ death signals in anoikis (Figure 2) (Kamarajan
et al, 2010), and may thus serve as a potential target to
modulate anoikis.

Summary and future directions

Oral squamous cell carcinoma treatments have shown
limited success in the clinical setting in recent decades.
Currently, there are many new promising potential
targets for cancer therapy and OSCC prognostic mark-
ers. Regulation of anoikis and apoptosis pathways in
tumor cells, including OSCC involves multiple ECM
proteins, cell surface receptors and intracellular signal-
ing targets, and these may be cell-type specific and may
serve as therapeutic targets for tumorigenesis. The
ability to target both death receptor pathways and
prosurvival pathways concurrently seems a promising
approach in anticancer therapy. Existing potential
targets need to be examined to develop more successful
therapeutic tools to provide vital and necessary
improvements in cancer treatment.
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