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Quantitative detection of
periodontal pathogens using
real-time polymerase chain
reaction with TagMan probes

Kuboniwa M, Amano A, Kimura RK, Sekine S, Kato S, Yamamoto Y, Okahashi N, lida
T, Shizukuishi S. Quantitative detection of periodontal pathogens using real-time

polymerase chain reaction with TagMan probes.
Oral Microbiol Immunol 2004: 19: 168—176. © Blackwell Munksgaard, 2004.

Quantitative analysis, with identification of periodontopathic bacteria, is important for
the diagnosis, therapeutic evaluation and risk assessment of periodontal disease. We
developed a highly sensitive and specific method using real-time polymerase chain
reaction (PCR) to detect and quantify six periodontal bacteria: Porphyromonas
gingivalis, Tannerella forsythia, Actinobacillus actinomycetemcomitans, Treponema
denticola, Prevotella intermedia, and Prevotella nigrescens. Species-specific TagMan
probe/primer sets were designed according to 16S ribosomal RNA gene sequences.
Plaque and tongue debris specimens were collected from 10 patients with advanced
periodontitis and 10 periodontal healthy individuals and analyzed. All species,
except for P. nigrescens, were detected in samples from diseased sites in significantly
greater numbers than in those from healthy sites, whereas greater numbers of

P. nigrescens were found in the controls. These results suggest that the present real-time
PCR method with the designed probe/primer sets enabled sensitive detection of the
six periodontal bacteria, and may also assist future microbial studies of

periodontal diseases.
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Periodontal diseases are infectious disor-
ders and the pathogenic microbial popula-
tions involved are known to be highly
complex. Numerous reports have demon-
strated a close association between period-
ontitis and a small subset of microbial
species that includes Porphyromonas gin-
givalis, Tannerella forsythia, Actinobacil-
lus actinomycetemcomitans, Treponema
denticola, and Prevotella intermedia (12,
22, 47, 49, 53). These pathogens are har-
bored on the tongue surface and their
metabolic products have also been sug-
gested as causative factors of halitosis
(11, 38, 43). Therefore, quantitative ana-
lysis with identification of pathogens in
clinical specimens would be helpful for

the diagnosis and therapeutic evaluation
of periodontitis, as well as to understand
the pathogenesis of halitosis.

Currently, several methods of quantita-
tive analysis are used to identify oral patho-
gens, including flow cytometry (54), a
DNA-DNA hybridization (8, 48, 51), and
real-time polymerase chain reaction (PCR)
(4, 30, 33, 40, 45, 60, 61). Real-time PCR
has some advantages, as its detection limit
of approximately 10 copies is more sensi-
tive than that of a DNA probe (10°~10*
copies) (8, 48). In addition, a real-time PCR
assay, along with a universal probe/primer
set, can be used to quantify an entire bacter-
ial load in a single clinical specimen with a
fair degree of precision, which is not pos-

sible with a DNA probe. As for flow cyto-
metry, most bacteria are optically too
similar to be distinguished from each other
or from debris without artificially modifying
the target bacteria with fluorescent labeling
techniques, such as fluorescent antibodies or
dyes (23, 54). Furthermore, coaggregation
of bacteria and the presence of different
contaminating matrices (e.g. dirt, food, den-
tal plaque) can also make accurate counting
difficult with direct or fluorescence micro-
scopy. For the reasons stated above, real-
time PCR would currently be more suitable
for quantitative detection of microorgan-
isms than the other methods.

A variety of Prevotella species are com-
monly detected in the human oral cavity



(19, 31, 34), with P.intermedia and Pre-
votella nigrescens the most prevalent.
P. intermedia is considered to be a period-
ontal pathogen, whereas P. nigrescens is a
marker of relative periodontal health (7-9,
16, 17, 19, 31, 36, 37, 44). These species
are phenotypically very similar, and bio-
chemical or serological differentiation is
considerably difficult and laborious (7, 10,
14, 17, 29, 34, 46). In light of the postu-
lated different roles of these two species,
however, it is essential to identify and
quantify them differentially in clinical spe-
cimens. A real-time PCR method using
SYBR Green I, a double strand DNA
binding dye, for detecting five periodontal
pathogens (P. gingivalis, A. actinomyce-
temcomitans, T.forsythia, T.denticola
and Treponema socranskii), has been
reported (45). In the TagMan system, a
set of three specific PCR probes, forward
and reverse primers, and TagMan probe, is
used. The real-time PCR with TagMan
probe allows continuous measurement of
products throughout the reaction in a
closed tube and exploits the 5* to 3’ exo-
nuclease activity of Taq polymerase in
conjunction with fluorogenic DNA probes.
In this method, a TagMan probe, designed
to hybridize to the target PCR product, is
labeled with a fluorescent reporter dye and
a quencher dye. During PCR amplification,
the probe is digested by Taq polymerase,
separating the dyes and resulting in an
accumulation of reporter fluorescence
along with a corresponding increased
fluorescence intensity (4, 30, 33, 40, 60,
61). Thus, TagMan hybridization probes
are likely to be adopted as more reliable
options for distinguishing between period-
ontal pathogens, especially for such closely
related species as P.intermedia and
P. nigrescens. For the same reason, a Taqg-
Man system would also be useful for
distinguishing  A. actinomycetemcomitans
(formerly Haemophilus actinomycetemco-
mitans) from Haemophilus influenzae, based
on their 16s rRNA sequences. In the present
study, species-specific TagMan probe/pri-
mer sets were designed for rapid and reliable
quantitative identification of P. gingivalis,
T. forsythia, A. actinomycetemcomitans,
T. denticola, P.intermedia, and P.nigres-
cens. Using these probe/primer sets, clinical
specimens from individuals with varying
clinical conditions were analyzed.

Material and methods
Bacterial strains

P. gingivalis, ATCC33277, ATCC53977,
6/26, HW24D1, W50, and HNA99;
A. actinomycetemcomitans, ATCC29522,
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ATCC29523, and FDCY4; T.forsythia,
ATCCA43037; T.denticola, ATCC33520;
P.intermedia, ATCC25611; and P. nigres-
cens, ATCC25261 were used as reference
strains. P. gingivalis, P.intermedia, and
P. nigrescens cells were grown in trypti-
case soy broth as described previously
(26), while A. actinomycetemcomitans
was grown in TSB supplemented with
yeast extract (1 mg/ml) and sodium bicar-
bonate (1mg/ml) (42). T.forsythia and
T. denticola were also grown under condi-
tions described previously (41, 59). Each
species was cultured at 37°C under anero-
bic conditions (80% N,, 10% CO,, 10%
H,) to the late exponential phase, then
harvested by centrifugation (12,000g at
4°C for 2min) and washed with phos-
phate-buffered saline (PBS) (pH 7.4).

Species-specific probe/primer sets for
real-time PCR

Multiple alignment analyses of the rRNA
genes of 100 major oral bacteria were
employed as reference materials for
designing the assays.

The 16S rRNA gene sequences (Gen-
Bank) from the following bacteria were
aligned using the Clustal W program ac-
cessed from DNA Data Bank of Japan (DDBJ;
http://www.ddbj.nig.ac.jp/): Actinomyces
bovis, Actinomyces israelii, Actinomyces
naeslundii, Actinomyces odontolyticus,
Actinomyces viscosus, A.actinomycetem-
comitans, Actinobacillus  delphinicola,
Actinobacillus seminis, Actinomyces suis,
Anaerococcus prevotii, Bacteroides fra-
gilis, Bifidobacterium dentium, Coryne-
bacterium matruchotii, Capnocytophaga
gingivalis, Capnocytophaga ochracea,
Capnocytophaga sputigena, Campylobac-
ter rectus, Camphylobacter sputorum,
Desulfovibrio sp., Eikenella corrodens,
Enterococcus faecalis, Enterococcus fae-
cium, Escherichia coli, Eubacterium noda-
tum, Eubacterium timidum, Filifactor
alocis, Fusobacterium nucleatum subsp.
nucleatum, Fusobacterium sulci, Fusobac-
terium simiae, Haemophilus aphrophilus,
Haemophilus ducreyi, Haemophilus hae-
molyticus, Haemophilus influenzae, Hae-
mophilus  paracuniculus, Haemophilus
parainfluenzae, Haemophilus paraphro-
philus, Haemophilus parasuis, Klebsiella
pneumoniae, Lactobacillus casei, Lacto-
coccus lactis, Legionella pneumophila,
Leptotrichia buccalis, Neisseria cinerea,
Neisseria denitrificans, Neisseria flavescens,
Neisseria mucosa, Pasteurella avium,
Pasteurella multocida, Pasteurella pneu-
motropica, Peptococcus niger, Peptostrep-
tococcus anaerobius, Peptostreptococcus
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micros, Porphyromonas cansulci, Porphyr-
omonas endodontalis, Porphyromonas gin-
givalis, Prevotella heparinolytica, Prevotella
intermedia, Prevotella loescheii, Prevotella
melaninogenica, Prevotella nigrescens, Pre-
votella oralis, Prevotella oris, Prevotella
veroralis, Propionibacterium acnes, Propio-
nibacterium  propionicus, Pseudomonas
aeruginosa,  Pseudomonas  fluorescens,
Ruminobacter amylophilus, Selenomonas
sputigena, Staphylococcus aureus, Staphylo-
coccus epidermidis, Streptococcus angino-
sus, Streptococcus bovis, Streptococcus
constellatus, Streptococcus cricetus, Strepto-
coccus downei, Streptococcus gordonii,
Streptococcus  intermedius, Streptococcus
macacae, Streptococcus mitis, Streptococ-
cus mutans, Streptocaccus oralis, Strepto—
coccus pyogenes, Streptococcus  rattus,
Streptococcus salivarius, Streptococcus san-
guis, Streptococcus saprophyticus, Strepto-
coccus sobrinus, Serratia marcescens,
Tannerella forsythia, Treponema denticola,
Treponema medium, Treponema pallidum,
Treponema pectinovorum, Treponema soc-
ranskii subsp. socranskii, Treponema
vincentti, Veillonella atypica, Veillonella
dispar, Veillonella parvula, and Vibrio cho-
lerae.

Species-specific probe and primer sets
were designed from the variable regions of
the 16S rRNA gene sequences. Regions of
identity were surveyed for possible cross-
hybridization with other bacterial genes
using the rRNA BLAST program, which
was accessed from The European Riboso-
mal RNA database (http://oberon.fvms.u-
gent.be:8080/rRNA/), and the BLAST
program accessed from National Center
for Biotechnology Information (NCBI;
http://www.ncbi.nlm.nih.gov./blast/). All
probe/primer sets were subjected to Primer
Express version 1.0, using the guidelines
established by Applied Biosystems (Foster
City, CA). A universal probe/primer set
was used as described previously (40). The
probes and primers were synthesized by
Applied Biosystems, except the forward
primer of P. nigrescens (the mixed primer),
which was synthesized by Sigma Genosys
(The Woodlands, TX). The oligonucleo-
tide probes were labeled with 6-carboxy-
fluorescein (FAM) at the 5’ end and 6-
carboxytetramethylrhodamine (TAMRA)
at the 3’ end and stored at —20°C.

Clinical specimens

Seventy plaque samples, whose bacterial
profiles were analyzed in our previous
study (2), were used to confirm the speci-
ficities of the newly designed TagMan
probe/primer sets. In addition, subgingival
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Table 1. Species-specific primers for conventional PCR

Primer sets Product size (bp) Ta (°C)" Reference
Porphyromonas gingivalis 197 60 (35)
5'-TGTAGATGACTGATGGTGAAAACC-3’

5'-ACGTCATCCCCACCTTCCTC-3'

Actinobacillus actinomycetemcomitans 262 55 (20)
5'-CTAGGTATTGCGAAACAATTTG-3'

5'-CCTGAAATTAAGCTGGTAATC-3

Tannerella forsythia 641 60 (5)
5'-GCGTATGTAACCTGCCCGCA-3'

5'-TGCTTCAGTGTCAGTTATACCT-3'

Treponema denticola 316 55 (45)
5'-TAATACCGAATGTGCTCATTTACAT-3'
5'-TCAAAGAAGCATTCCCTCTTCTTCTTA-3'

Prevotella intermedia 575 55 5)
5-TTTGTTGGGGAGTAAAGCGGG-3’

5'-TCAACATCTCTGTATCCTGCGT-3'

Prevotella nigrescens 804 55 %)

5'-ATGAAACAAAGGTTTTCCGGTAAG-3
5'-CCCACGTCTCTGTGGGCTGCGA-3

*Annealing temperature (Ta) of PCR reaction.

plaque and tongue surface debris speci-
mens were collected from 20 individuals,
of whom 10 were patients with advanced
periodontitis (mean age 48.3 + 15.9 years)
and 10 were periodontal healthy controls
(mean age 56.6 = 12.4 years). The period-
ontitis patients possessed active sites in
greater than 40% of all their teeth, which
were defined by probing depth of 6 mm or
greater, bleeding on probing, and the pre-
sence of either erythema or suppuration.
The controls had probing depths of 3 mm
or less and exhibited no clinical signs of
alveolar bone loss in dentition, bleeding on
probing, or signs of erythema or suppura-
tion. The subgingival plaque samples were
collected from the deepest pocket of each
subject in a manner described previously
(2), while tongue surface debris samples
were collected with sterile spatulas as
thoroughly as possible and then immedi-
ately suspended in sterile PBS. After col-
lection, all samples were kept on ice, and
genomic DNA was immediately extracted,
as described below.

DNA isolation

Genomic DNA isolation from the speci-
mens was performed using a PUREGENE
DNA Isolation Kit (Gentra systems, Min-
neapolis, MN) according to the manufac-
turer’s instructions. Purified genomic DNA
of H.influenzae ATCC 33991 was pur-
chased from American Type Culture Col-
lection (ATCC, Manassas, VA). DNA
concentrations were determined spectro-
photometrically using a GeneQuant II
RNA/DNA Calculator (Amersham Phar-
macia Biotech, Piscataway, NJ).

Screening by conventional PCR

Bacterial species-specific primers used for

conventional PCR are shown in Table 1.

PCR amplification was performed in a

reaction mixture (25pwl) consisting of

Ready-To-Go PCR beads (Amersham

Pharmacia Biotech) containing an enzyme

and the required reagents, along with

0.8 uM of each primer and 2l of the

template DNA solution (20-50 pg/ml),

as described previously (3). The amplifica-
tion reaction was performed in a model

2400 thermal cycler (Perkin Elmer,

Branchburg, NJ) with the cycling para-

meters set as follows.

e For T forsythia, P.intermedia, and
P. nigrescens: an initial denaturation at
95°C for 5 min; 30 cycles consisting of
95°C for 30s, 55 or 60°C for 30s and
72°C for 1 min; and a final extension at
72°C for 7 min.

e For P.gingivalis, A.actinomycetemco-
mitans, and T. denticola: an initial dena-
turation at 95°C for Smin; 30 cycles
consisting of 95°C for 30s, 55 or
60°C for 30s and 72°C for 45s; and a
final extension at 72°C for 7 min.

The annealing temperature (Ta) varied
depending on the primer sets (Table 1). For
negative and positive controls, the PCR
assays were also performed with or without
the isolated genomic DNA from the refer-
ence strains of the targeted organisms. The
PCR products were subjected to electro-
phoresis on a 2% agarose gel with Tris
acetate EDTA buffer. The gel was stained
with 0.5 pg/ml of ethidium bromide and
photographed under ultraviolet illumina-
tion. An EZ load 100bp (Bio-Rad, Her-

cules, CA) was used as the molecular size
standard.

Quantitative analysis by real-time PCR

Real-time PCR was carried out using a

LIGHTCYCLER™ system (Roche Diagnos-

tics, Mannheim, Germany) and the desig-

nated capillaries. Duplicate samples were
routinely used for determination. Each PCR
was performed in a total volume of 20 ul
containing 2 pl of x 10 LIGHTCYCLER-DNA

Master Hybridization Probes (Roche Diag-

nostics), 0.2 I each of forward and reverse

primers (final concentration, 500 nM each),
an appropriate dose of the TagMan probe

(final concentration 200 nM; Applied Bio-

systems), an appropriate amount of MgCl,

(final concentration 3—6 mMm), 2 ul of tem-

plate DNA solution and an appropriate dose

of sterilized DNase—RNase-free water. The
optimized MgCl, final concentration in
each species-specific reaction solution
was determined as follows: 4 mM for P. gin-
givalis, 5SmM for A. actinomycetemcomi-
tans, 3mM for T forsythia, 6 mM for

T. denticola, 3 mM for P. intermedia, 4 mM

for P. nigrescens, and 5 mM for the universal

probe/primer reaction solution. Each ampli-
fication reaction was performed in the

LightCycler with the cycling parameters

set as follows.

e For P.gingivalis, T.forsythia, T.denti-
cola, and P. nigrescens: an initial dena-
turation at 95°C for 1min, 50 PCR
cycles at 95°C for 5s, 57°C for 15s,
and 72°C for 5, and a final cooling at
40°C for 8 min.

o For P. intermedia: an initial denaturation
at 95°C for 1 min, 50 PCR cycles at 95°C
for5s, 56°C for 15 sand 72°C for 8 s, and
a final cooling at 40°C for 8 min.

e For A.actinomycetemcomitans:  an
initial denaturation at 95°C for 1min,
50 PCR cycles at 95°C for 5, 57°C for
15 s and 72°C for 35s, and a final cool-
ing at 40°C for 8§ min.

e For Universal: an initial denaturation at
95°C for 1 min, 50 PCR cycles at 95°C
for 5s, 58°C for 15s and 72°C for 20s,
and a final cooling at 40°C for 8 min.
Fluorescence intensity was monitored at

the annealing temperature in single acqui-

sition mode. The dye signals generated
during a run were measured in fluorimeter

channel 2 (F2, 640 + 30 nm) and channel 1

(F1, 530+30nm) and the results were

indicated as the F2/F1 ratio, which was

considered adequate for a TagMan probe
conjugated with FAM and TAMRA. Fluore-
scent data were analyzed with LightCycler

Data Analysis (LCDA) software version

3.5 (Roche Diagnostics).



Calculation of theoretical cell numbers by
real-time PCR

The bacterial DNA levels were quantified
by real-time PCR and converted to theore-
tical cell numbers by the following method.
TagMan technology provided by the man-
ufacturer determines the PCR cycle at
which the increase in fluorescence of the
reporter dye reaches a threshold cycle (Cr).
Cr is proportional to the log of the amount
of the target gene and, hence, the log of the
number of bacteria in the sample, provided
there are the same copy numbers of the
reported sequence within a genome of var-
ious bacteria. When using a gene as a
detecting target for the accurate quantifica-
tion of cell numbers of certain bacteria (not
only in real-time PCR, but also in DNA
hybridization), the genome weight and tar-
geted gene copy numbers per cell must be
known, though they are also affected by
doubling time. There are numerous types of
bacteria in the oral cavity and it is impos-
sible to accurately know each of their gen-
ome weights and 16s rRNA copy numbers.
In the present study, therefore, the total
bacterial load in the clinical specimens
was calculated on the assumption that the
16s rRNA gene copy numbers of the oral
anaerobes were not significantly different

Quantitation of oral pathogen by real-time PCR

from each other (22, 40). P.gingivalis,
whose genome has recently been sequenced
and for which the exact genome size
(2.2Mb) and weight (2.37fg) are known
(33), was used as the representative bacter-
ium for the reasons mentioned above.
First, serial dilutions of P.gingivalis
genomic DNA were analyzed using the
universal probe/primer set. Serial dilutions
of the other five bacterial genomic DNA
were then analyzed using the universal
probe/primer set and their theoretical cell
numbers calculated based upon standard
curves derived from the genomic DNA of
P. gingivalis. Adjusted in this manner, serial
dilutions comparable to 10°-10” colony-
forming units were used for quantitative
specific detection of each targeted pathogen.

Statistical analysis

A Mann—Whitney U-test was used for
comparative analysis among groups of
clinical specimens.

Results
Design of the species-specific probe/
primer sets

A multiple alignment among the 16S
rRNA gene sequences of 100 oral bacteria

Table 2. Species-specific primers /TagMan probes for real-time PCR
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was performed using Clustal W. The spe-
cies-specific  probe/primer sets were
designed according to the sequence of
identity determined with Primer Express
ver.l (Table2). The specificities of the
newly designed probes and primers were
further confirmed by multiple alignment of
the relevant sequences of closely related
species and a BLAST homology search
program (NCBI). Probe/primer sets for
P. intermedia and A. actinomycetemcomi-
tans were designed according to the
sequences of the complementary strand.
The 16S rRNA sequences of the closely
related P.intermedia and P.nigrescens
showed a high similarity (92% homology),
thus, distinctly variable regions between
these two sequences were successfully
identified for designing the species-speci-
fic probe/primer sets (Fig. 1).

Quantitative sensitivity of species-specific
probe/primer sets

The total number of bacterial cells was
determined using the TagMan PCR proce-
dure with the universal probe/primer set.
The standard curve was analyzed with the
universal probe/primer set against a serial
dilution of P.gingivalis genomic DNA,
which corresponded to 10°—107 cells and

Product
Primers/TagMan Probe sets Length Tm* %GC size (bp) Ta (°C) Reference
Universal
5’-TCCTACGGGAGGCAGCAGT-3’ 466 58 (33)
5’-GGACTACCAGGGTATCTAATCCTGTT-3’
5’-FAM-CGTATTACCGCGGCTGCTGGCAC-TAMRA-3’
Porphyromonus gingivalis
5’-ACCTTACCCGGGATTGAAATG-3’ 21 59 48 83 57 This study
5’-CAACCATGCAGCACCTACATAGAA-3’ 24 60 46
5’-FAM-ATGACTGATGGTGAAAACCGTCTTCCCTTC-TAMRA-3’ 30 69 47
Actinobacillus actinomycetemcomitans
5’-CCCATCGCTGGTTGGTTA-3’ 18 56 56 696 57 This study
5’-GGCACGTAGGCGGACC-3’ 16 57 75
5’-FAM-CCTCTGTATACGCCATTGTAGCACGTGTGT-TAMRA-3’ 30 68 50
Tannerella forsythia
5’-AGCGATGGTAGCAATACCTGTC-3’ 22 57 50 88 57 This study
5’-TTCGCCGGGTTATCCCTC-3’ 18 59 61
5’-FAM-TGAGTAACGCGTATGTAACCTGCCCGC-TAMRA-3’ 27 70 56
Treponema denticola
5’-CCGAATGTGCTCATTTACATAAAGGT-3’ 26 60 38 122 57 This study
5’-GATACCCATCGTTGCCTTGGT-3’ 21 60 52
5’-FAM-ATGGGCCCGCGTCCCATTAGC-TAMRA-3’ 21 70 67
Prevotella intermedia
5’-TCCACCGATGAATCTTTGGTC-3’ 21 58 48 98 56 This study
5’-ATCCAACCTTCCCTCCACTC-3’ 20 57 55
5’-FAM-CGTCAGATGCCATATGTGGACAACATCG-TAMRA-3’ 28 69 50
Prevotella nigrescens
5’-CCGTTGAAAGACGGCCTAA-3’ 19 57 53 82 57 This study
5’-CCCATCCCTTACCGGRA-3’ 17 55 59
5’-FAM-CCCGATGTGTTTCATTGACGGCATC-TAMRA-3’ 25 69 52

*Melting temperature of DNA (Tm) was analyzed with Primer Express version 1.0 (Applied Biosystems).
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P. intermedia

TACAATGGAGAGTTTGATCCTGGCTCAGGATNAACGCTAGCTATAGGCTT 50
(L16468)

I T e e I O O A O IR AR R |
P. nigrescens -ACAATGGAGAGTTTGATCCTGGCTCAGGATNAACGCTGGCTACAGGCTT
(116479)

51  AACACATGCAAGTCGAGGGGAAACGGCATTATGTGCTTGCACATTCTGGA 100
Firrrrrrrerrrerr il trrrrererererererrrererrrrred
AACACATGCAAGTCGTGGGNNAACGGCATTATGTGCTTGCACATTCTGGA

101  CGTCGACCGGCGCACGGGTGAGTATCGCGNATCCAACCTTCCCTCC-ACT 150
T T I A B | [
CGTTGACCGGCGCACGGGTGAGTATCGCGNATCCAACCTGCCC-CNTACT

3% 3% 3k %k %k %k %k 5k Xk % % kK Kk k k
151 GGGGGATACCCCGTTGAAAGACGGCCTAATACCCGATGTTGTCCACAT-- 200
trrrrrrecrrrrrrrerrrrrrrerrrrrrrerrrer ol [
TGGGGATACCECGTTGAAAGACGGCCTAATACCCGATGT-GTTT-CATTG
kkkkkkkk kkkk kkkkxk
% %k >k 3k % %k %k %k %k %k %k k k

201  ATGGCATCTGACGTGIGACCAAAGATTCATC-GGTGGAGG-ATGGGGATGC 250
Lorrrerr i | e A O R R I | [ e rrrrrrrrnd
ACGGCATCCGATATGAAACAAAGGTT[T-YCCGGTA-AGGGATGGGGATGC
% 3k 3k % %k %k %k ¥

251  GTCTGATTAGCTTGTTGGTGCGGGTAACGGCCCACCAAGGCTNCGATCAG 300
trrerererere rrerr et o rrrrrrrrrrrerrd Frrrrn
GTCTGATTAGCTNGTTGGCG-GGGCAACGGCCCACCAAGGCGACGATCAG

301  TAGGGGTTCTGAGAGGAAGGTCCCCCACATTGGAACTGAGACACGGTCCN 350

RN NN RN RN NN RN RN RN R RN RN AR RN R NN
TAGGGGTTCTGAGAGGAAGGTCCCCCACATTGGAACTGAGACACGGTCCN

Fig. 1. Maximum matching analysis between the partial 16S ribosomal RNA gene sequences of P. intermedia and P. nigrescens. Maximum matching
analysis between partial 16S rRNA genes of these two closely related species was performed using DNASIS-MAC version 3.7 (Hitachi Software
Engineering, Tokyo, Japan), and variable regions were identified for designing the species-specific probe/primer sets. Dotted sequences indicate TagMan
hybridization probes, and boxed sequences show the forward and reverse primers. The probe/primer set for P. intermedia was designed according to the

sequence of the complementary strand.

showed a credible error value (error=
0.0707) (Fig. 2). We confirmed the weight
of the purified genomic DNA of P. gingi-
valis, which corresponded to 107 cells by
the colony counting method and compared
it to the genomic weight calculated by the
hypothesis employed in this study. The
former amount was approximately 15%
less than the latter. Serially diluted geno-
mic DNA solutions purified from each of
the six pure bacterial species cultures,
which were converted to number of cells,
were employed for analyzing the standard
curve used for quantitative detection
with the newly designed probe/primer
sets. The curve of each pathogen between
logarithms of serially diluted genomic
DNA and threshold PCR cycles was
found to be linear over a wide range, cor-
responding to 10°>~10 cells (P. gingivalis,
error = 0.0695; A. actinomycetemcomitans,
error = 0.0288; T. forsythia, error = 0.0354;
T. denticola, error=0.0311; P. intermedia,

error = 0.0898; and P. nigrescens, error =
0.0182) (Fig.2).

Specificity of species-specific probe/
primer sets

The newly designed species-specific
probe/primer sets showed no cross-reactiv-
ity with any other species when used with
the DNA samples of the reference strains
and clinical samples of bacterial profiles
from our previous study (data not shown)
(2). In addition, there was no cross-reac-
tivity of the probe/primer set for A. acti-
nomycetemcomitans with H. influenzae
(data not shown). Further, the differential
identification and quantification of P. inter-
media and P. nigrescens were confirmed.
The determined amounts of P.intermedia
DNA were accurately quantified by real-
time PCR, even in the presence of the same
amount of P.nigrescens genomic DNA
(Fig.3a). The quantitative detection of

P.nigrescens genomic DNA was not
affected by P. intermedia DNA (Fig. 3b).

Crude genomic DNA samples were
extracted from 10 subgingival plaque (P-
pocket) and 10 tongue surface debris (P-
tongue) specimens taken from patients with
advanced periodontitis, as well as from 10
subgingival plaque (H-pocket) and 10 ton-
gue surface debris (H-tongue) specimens
from periodontal healthy individuals, and
analyzed (Table 3). The identification and
quantification of theoretical cell numbers of
periodontal bacteria were estimated by real-
time PCR, and their specific reactivity with
the targeted species was again demonstrated
by a conventional PCR assay.

Comparison of proportion of periodontal
bacteria in clinical specimens

The prevalence and amount of the targeted
species harbored by the subjects were
compared using a real-time PCR assay
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Fig. 2. Correlation between threshold cycle and number of cells. Standard curves from real-time PCR
with the universal or species-specific probe/primer sets are shown. The threshold cycle is the cycle
number when threshold fluorescence was reached. The theoretical cell number was calculated as
described in Material and Methods. Reactions of the universal or species-specific probe/primer sets
with genomic DNA of the targeted pathogen are shown. a) Universal with P. gingivalis DNA. Species
specific with (b) P. gingivalis, (c) A. actinomycetemcomitans, (d) T. forsythia, (e) T.denticola, (f)
P.intermedia, and (g) P. nigrescens. Each reaction was performed in duplicate. By plotting the
standard curve values, using LIGHTCYCLER software version 3.5.28, we generated the represented
data. ‘Slope’ represents the overall reaction efficiency. PCR efficiency (E) was calculated by the
following formula; E=10""5"° “Error’ (mean squared error) provided clues to tube to tube
variations, e.g. pipetting errors. The standard curve was considered reliable when the error value was
<0.2. ‘Intercept’ is the value of y-intercept and ‘7’ is the correlation coefficient.

(Fig.4). In the subgingival samples, all
periodontal  pathogens, except for
P. nigrescens, were more prevalent in the
diseased sites than in the healthy sites and
in a significantly greater proportion in
diseased pockets (P < 0.05). P. nigrescens
was detected in greater proportions in the

controls. In the tongue debris samples,
greater proportions of P.gingivalis
(P=0.0051), P.intermedia (P=0.0342),
and T. denticola (P=0.0051) were found
in the patients than in the non-disease
controls, but no significant differences
were found in the proportions of A. acti-
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Fig. 3. Specific detection of P.intermedia and
P. nigrescens using real-time PCR. We con-
firmed the differential identification and quanti-
fication of P.intermedia and P.nigrescens.
Serial dilutions of genomic DNA from P. inter-
media and P. nigrescens, corresponding to 107—
10 cells (16.6 ng to 166 fg in P. intermedia, and
8.74 ng to 874 fg in P. nigrescens), were used as
templates for real-time PCR. The reactions were
performed with the targeted bacterial DNA in
the presence or absence of another equivalent
DNA template. Each assay was repeated twice.
a) Standard curve from real-time PCR with
P. intermedia specific probe/primer set. b) Stan-
dard curve from real-time PCR with P. nigres-
cens specific probe/primer set.

nomycetemcomitans, T.forsythia, and
P. nigrescens. When we analyzed the pre-
sence or absence of the target species in
samples from patients, the existing bacteria
in the plaque samples were shown to be in
the tongue debris taken from the same
subject (Table 3; Fig. 4).

Discussion

The bacterial 16S rRNA gene is a useful
target for detection and quantification of
bacteria in a variety of complex environ-
mental and health-related situations, during
which a multi-species population is
sampled along with impurities, or where
the bacteria are internalized within a matrix
(1, 21, 23, 55-57). In theory, the variable
regions of the 16S rRNA gene should pro-
vide a means for species-specific detection
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Table 3. Analysis of bacterial distribution in subgingival plaque and tongue debris specimens by conventional and real-time PCR

Universal P. gingivalis A. actinomycetemcomitans  T. forsythia P. intermedia P. nigrescens T. denticola

Real-time Real-time Real-time Real-time Real-time Real-time Real-time
Sample no.* PCR*™ PCR PCR PCR PCR PCR PCR PCR PCR PCR PCR PCR PCR
P-pocket-1  2.86E+07 + 6.59E4+02 + 8.18E+03 + 5.65E4+04 + 1.22E4-06 + 5.81E4+04 + 8.53E+404
P-pocket-2  4.77E+07 + 8.04E+06 — - + 1.07E+06 + 1.94E4+07 + <100 + 3.87E+05
P-pocket-3  6.28E+07 + 1.15E4+06 + 9.33E+04 + 4.15E+05 + 7.24E4+06 + 331E4+02 + 1.74E+4-05
P-pocket-4  1.99E+07 + <100 + 2.69E+04 + 8.60E4+04 + 5.79E4+05 + 2.52E+05 + 7.74E+-04
P-pocket-5  2.18E+07 + 3.94E+05 — - + 3.14E+05 + 2.93E4+05 + 6.81E+04 + 1.05E+405
P-pocket-6  4.01E4+06 + 2.66E+05 — - + <100 + 2.36E4+06 + 7.07E4+04 + 2.42E+04
P-pocket-7  1.11E4+07 + 2.60E+06 + 3.09E+05 + <100 + 1.94E4+06 + <100 + 1.67E+-05
P-pocket-8  6.67E+07 + 481E+05 — - + 3.44E+05 + 2.14E4+07 + 1.06E+06 + 2.44E+-05
P-pocket-9  1.88E+07 + <100 — — + 1.16E4+04 + 3.89E+05 + 5.76E4+05 + 1.61E+04
P-pocket-10 2.29E+07 + <100 + 1.90E+03 + 1.32E4+04 + 3.15E4+06 + 6.09E4+05 + 3.73E+04
H-pocket-1 1.21E4+06 — - - + <100 + 2.21E4+04 + 2.01E+05 + 1.06E+04
H-pocket-2  1.04E+06 — - - - + <100 — - + 3.33E4+05 £ <100
H-pocket-3  2.52E+06 — - — - + <100 — <100 + 6.69E4+03 — -
H-pocket-4  7.39E4+05 =+ <100 — - + 2.33E+03 + 5.02E4+03 + <100 + 7.36E403
H-pocket-5 5.88E+06 — - — - + <100 - - + <100 - -
H-pocket-6  3.23E4+06 + 1.96E4+02 — - + <100 + 7.14E4+03 + 1.77E4+02 + <100
H-pocket-7  2.11E4+06 — - - - - - + <100 + 1.14E4+04 — -
H-pocket-8  4.19E4+06 — - — - + 1.25E+03 + 1.61E4+05 + 1.24E405 + 3.15E403
H-pocket-9  2.21E4+05 + 1.14E4+02 — - + <100 - - + 2.52E+02 + <100
H-pocket-10 2.63E+07 — - - - + <100 - - + <100 + 1.39E+4-03
P-tongue-1  1.35E+07 + <100 + <100 + <100 + 4.89E+03 =+ <100 + 9.36E+02
P-tongue-2  3.63E+07 + 2.79E4+05 — - + 2.19E+05 + 8.02E4+05 + <100 + 7.10E+404
P-tongue-3  1.43E4+08 + <100 + <100 + 2.18E+03 + 9.89E+05 + <100 + 4.42E+04
P-tongue-4  3.47E406 + <100 + <100 + 2.01E+02 + 2.74E4+03 + 8.08E+03 =+ 1.16E+03
P-tongue-5  7.05E+06 + 1.41E4+03 — - + 1.82E4+03 + 2.74E4+05 + 1.07E4+05 + 1.18E+404
P-tongue-6  3.02E4+07 + <100 — — + 3.17E4+03 + 4.78E+04 + <100 + 6.02E+02
P-tongue-7  1.35E4+08 + <100 + 4.52E+04 + <100 + 1.80E+05 + <100 + 2.51E+04
P-tongue-8  1.61E4+08 + <100 + <100 + 6.79E4+04 + 2.92E4+05 + 5.85E4+04 + 1.10E+4-04
P-tongue-9  4.65E+07 + 2.30E+03 — - + 1.10E+05 + 1.18E4+06 + 3.56E+05 + 3.24E+04
P-tongue-10 2.11E4+08 + <100 + 6.21E+03 + 497E+03 + 5.53E4+04 + 2.10E+02 + 4.74E+4-03
H-tongue-1  8.83E+07 + <100 + <100 + 2.38E+05 + 2.97E4+05 + 4.10E+02 + 2.91E+04
H-tongue-2 2.01E+08 + <100 — - + 4.58E+06 =+ 4.27E+04 + <100 + 1.52E+03
H-tongue-3 2.07E4+06 — - - - + 9.56E4+02 + 1.23E4+03 + <100 + <100
H-tongue-4 1.01E4+07 + <100 — — + 8.45E4+02 + 7.33E+04 + <100 + 2.42E+403
H-tongue-5 3.47E+07 — - — - + <100 + 6.70E+03 + <100 + 6.64E4-02
H-tongue-6  7.35E+05 + <100 — - + <100 + 9.28E+02 + 447E+03 + <100
H-tongue-7 8.18E+06 — - — - + <100 — - + 1.85E+04 + <100
H-tongue-8 4.45E+06 — - - - + 1.33E4+02 + 6.04E4+03 + 3.51E4+04 — 2.73E402
H-tongue-9 6.67E+03 — - — — + — - - - + <100

H-tongue-10 3.97E+07

<100

*Crude genomic DNA samples were extracted from 10 subgingival plaque (P-pocket) and 10 tongue surface debris (P-tongue) specimens taken from
patients with advanced periodontitis, as well as from 10 subgingival plaque (H-pocket) and 10 tongue surface debris (H-tongue) specimens from
periodontal healthy individuals, and analyzed. f (+): detected, (—): not detected, (+): faintly detected.

and enumeration of complex bacterial
populations by real-time PCR (24, 32, 33,
40, 55-57). Therefore, once species-specific
TagMan probe/primer sets are successfully
designed for pathogens, a real-time PCR
assay can be used as a reliable tool for rapid
and highly sensitive enumeration. In the
present study, multiple alignments of the
16S rRNA gene sequences of 100 oral
bacterial species of interest were analyzed.
The quantitative sensitivity and specificity
of newly designed TagMan probe/primer
sets were verified using both reference
strains and clinical specimens, for which
the presence or absence of the target species
had been established by conventional PCR.

The exact copy number of 16S rRNA
operons within each cell of the numerous
species of oral bacteria has not been clar-
ified and doubling time varies among bac-

terial species; this represents the major
limitation to the absolute determination
of bacterial numbers by real-time PCR
based on the 16S rRNA gene sequence
(13, 25). However, it was previously
reported that threshold cycles correspond-
ing to the same amounts of genomic DNA
of slow growing oral anaerobes were simi-
lar to each other (30, 40). Therefore, we
utilized P. gingivalis, for which accurate
genome size and weight are known, as the
reference species to form a universal stan-
dard curve, which was then used to calcu-
late the theoretical cell numbers of five
other oral anaerobes.

The yield of the purified genomic DNA
from pure cultured P.gingivalis, whose
cell number had been calculated by colony
counting, was considerably less than the
theoretical weight, and the loss seemed to

be unavoidable in the purification step
(data not shown). Estimating cell numbers
by colony counting might therefore not be
suitable for a standard, though the present
attempt to quantify periodontal bacteria
was sufficiently reliable to compare bac-
terial proportions within various clinical
samples. TagMan probe/primer sets were
employed for the identification and quan-
tification of six periodontal bacteria har-
bored in subgingival plaque from diseased
sites and on tongue surfaces of periodon-
titis patients by real-time PCR, and the
results showed that all periodontal bacteria,
except for P. nigrescens, were periodonti-
tis-associated species (Table3). These
results demonstrate that such patients har-
bor greater amounts of periodontal patho-
gens in diseased subgingival sites. In
addition, it was verified that the probe/
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Fig. 4. Comparison of bacterial distribution in clinical specimens. The presence or absence and
amount of targeted species harbored by the subjects were compared using real-time PCR. Crude
genomic DNA from 10 subgingival plaque (P-pocket) and 10 tongue surface debris (P-tongue)
samples taken from patients with advanced periodontitis, and 10 subgingival plaque (H-pocket) and
10 tongue surface debris (H-tongue) samples taken from periodontal healthy individuals were
analyzed. Standard errors are shown as error bars. Number in parentheses: number of positive
samples in which the targeted pathogen was present.

primer sets reacted accurately with crude
DNA samples containing target bacteria.
In the past decade, systematic bacteriol-
ogy has been reorganized based on gene
analysis (1, 16, 27, 58). Further, intraspe-
cies heterogeneity among strains of
P.intermedia was investigated and a new
species, designated as P. nigrescens, was
proposed (14, 16, 46). Recently, a quanti-
tative fluorescent insitu hybridization
(FISH) assay for differential identification
of P.intermedia and P.nigrescens was
reported (19); however, a quantitative
real-time PCR assay for these species that
is more accurate and rapid than FISH has
not been described. In the present study, we
used a real-time PCR analysis method to
identify P.intermedia and P.nigrescens
organisms according to their different vari-
able regions of 16S rRNA gene sequences.
Our quantitative assay of clinical speci-
mens showed that P. intermedia was related
to periodontitis, whereas P. nigrescens dis-
played no obvious tendency in association
with periodontal health status (Fig. 4). This
contradictory occurrence was previously
reported using sensitive detection methods,
though they lacked quantitative ability (9,

17, 34), and the present investigation is the
first to show quantitative findings in support
of those previous reports.

It is known that bacterial species occur-
ring in tooth and tongue samples are highly
associated in individuals, and that most
species are more frequently detected in
tongue specimens as compared to those
from subgingival sites (34, 39, 51, 52).
The tongue dorsum is suggested to house
an organized biofilm in which anaerobic
bacteria may locate and thrive, from which
anaerobic locations around the teeth are
seeded. This hypothesis is consistent with
the concept that mucosal surfaces serve as
the initial colonization site and reservoir
for oral sites (6, 15, 18, 28, 35). The present
findings also indicate that tongue samples
are advantageous for examining preva-
lence. In addition, halitosis is also sug-
gested to be related to the microbial
complex on the tongue (11, 38). The pre-
sent real-time PCR method may assist
further investigations to understand micro-
bial roles in that condition.

In summary, the present real-time PCR
method is suitable for the detection of six
putative periodontal bacteria without

cross-detection of genomic products from
other species. Further, results of our quan-
titative analysis of clinical specimens sug-
gest that the microbial population in the
oral cavity is varied depending on period-
ontal health status and site of sample col-
lection. The present findings may help
future microbial studies of periodontal dis-
eases as well as those of halitosis.
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