
Dental plaque is a complex and dynamic
microbial ecosystem comprising hundreds
of species that exist in a biofilm (13, 17).
Biofilm formation is key to the existence
and survival in the oral cavity with
numerous inter- and intra-species interac-
tions (12). Some bacterial interactions are
potentially beneficial to one or more
species of the biofilm, for example through
enzyme complementation (18) and aggre-
gation (8, 10, 15), whereas other interac-
tions are antagonistic, such as generation
of low pH (4, 11, 20) and bacteriocin
production (9). The net result of all these
interactions is a highly organized, hetero-
geneous biofilm consisting of microniches
that supports the coexistence of microbial
complexes of functionally similar and
dissimilar bacteria.

We have previously reported that Lacto-
bacillus rhamnosus demonstrated a poor
ability to form a mono-culture biofilm but
that in the presence of Actinomyces nae-
slundii it predominated in a substantial
biofilm (19). Actinomyces are major com-
mensal species on both tooth and mucosal
surfaces (11–13). The aim of the present
study was to establish a specific biofilm
growth promotion of lactobacilli by Acti-
nomyces species.

Material and methods

Bacterial strains and inoculation procedure

The bacteria investigatedwereLactobacillus
plantarum SA-1, L. rhamnosusATCC 7469,
A. naeslundii ATCC 12104, Actinomyces
gerencseriae ATCC 23860 Streptococcus

mutansNZCDC 3362 and Veillonella parv-
ula ATCC 10790. Prior to biofilm inocula-
tion, 10 ml cultures were grown in TSBYK
medium in an anaerobic hood at 35�C
supplied with 80% N2, 10% CO2, and
10% H2, except for S. mutans, which was
incubated in a 10%CO2 in air atmosphere at
35�C. TSBYK medium contains (per liter):
15 g tryptic soy broth (Beckton Dickinson
and Co., Sparks, MD); 18.5 g brain heart
infusion (Difco; Detroit, MI); 10 g yeast
extract (Difco) and 5 mg hemin (Sigma
Chemical Co., St. Louis, MO) autoclaved
and supplemented with Vitamin K (4 lg/ml
final concentration) (25).
Overnight cultures of the test bacteria

were harvested by centrifugation
(1500 · g, 20�C, 30 min) and resuspend-
ed in 2 ml sterile water. The selected
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cocultures were prepared by mixing equal
volumes from the mono-culture suspen-
sions. Coverslips, prepared as described
below, were inoculated directly in the
multiplaque ‘artificial mouth’ (MAM)
with 0.5 ml of the bacterial suspension
30 min prior to the flow of medium
commencing.

General biofilm growth conditions

Details of the MAM have previously been
described (19–21, 27). In brief, the bio-
films were cultured on 25 mm diameter
Thermanox� coverslips (Nunc Inc.,
Naperville, IL), 17 mm under a fluid head
assembly with lines for nutrient supply and
inoculation. The culture chamber, housed
in a custom-built Perspex air incubator at
35�C, was supplied with humidified gas
(5% CO2 in N2) for 30 min every 2 h.
Each biofilm was continuously supplied
(2.5 ml/h) with a chemically defined ana-
log of saliva (defined medium mucin) (27)
and a periodic supply of 5% w/v (146 mm)
sucrose (1.5 ml/h, 6 min every 8 h).
Defined medium mucin contains (in mm):
CaCl2 (1.0), MgCl2 (0.2), KH2PO4

(3.5), K2HPO4 (1.5), NaCl (10.0), KCl
(15.0), NH4Cl (2.0), urea (1.0); pig gastric
mucin (2.5 g/l), amino acids equivalent to
5 g/l casein (total 43.12 mm), and at
salivary concentrations, 21 basal amino
acids and 17 vitamins or growth factors,
pH 7.0.

Experimental protocol

In Experiment I, biofilms of L. rhamnosus
in mono- and coculture with A. naeslundii
and A. gerencseriae and biofilm mono-
cultures of A. gerencseriae and A. nae-
slundii, were established in the MAM
and grown undisturbed for 19 days. In
Experiment II, biofilm mono-cultures of
L. rhamnosus, L. plantarum and in cocul-
ture with A. gerencseriae, A. naeslundii,
S. mutans and V. parvula were established
in the MAM and grown undisturbed for 14
days.

Biofilm analysis

At the end of each experiment, the biofilm
wet weight was measured. The average
biofilm depth was estimated as the total
wet weight divided by the area of the
coverslip (490 mm2). Photographs of
whole biofilms were taken using a digital
camera (Olympus DP10, Olympus Austra-
lia, Melbourne, Australia) fitted on a
binocular microscope (Olympus SZX12,
Olympus Australia).

For each biofilm, an 8.0 mg/ml suspen-
sion was prepared by homogenizing (Ika-
UltraTurrax, Janke and Kunkel GmbH &
Co., Staufen, Germany) approximately 0.4
g (wet weight) of biofilm in sterile water
for 90 s. Portions were taken for the
different analyses below.
To determine total bacterial colony-

forming units (CFU), serial 10-fold dilu-
tions in 1% peptone (Difco Laboratories,
Detroit, MI) of the homogenized plaque
were plated in triplicate using a spiral
plater (Model D, Spiral Biotech Inc.,
Norwood, MA). TSBYK supplemented
with 5% defibrinated sheep blood (Invi-
trogen, Auckland, New Zealand)
(TSBYK-B) was used to determine total
CFU, and Rogosa SL (Difco) to obtain
lactobacilli CFU. Both were incubated
anaerobically for 3 days at 35�C. Due to
the selective nature of the Rogosa medium,
more lactobacilli were recovered on the
TSBYK-B plates; a plating efficiency
coefficient for Rogosa agar was therefore
derived for the lactobacilli mono-culture
biofilms: lactobacilli TSBYK-B count
divided by the lactobacilli Rogosa count.
The Rogosa CFU data of the cocultures
were adjusted accordingly and differences
in the amount of lactobacilli were analyzed
for significance using an independent two-
sample t-test with SPSS (v12.0.1 for
Windows, SPSS Inc., Chicago, IL). The
number of non-lactobacilli CFU was cal-
culated by subtracting the Rogosa count
adjusted for plating efficiency from the
total TSBYK-B count. Where appropriate,
other CFU comparisons were analyzed for
significance using independent two-sample
t-tests. The number of CFU per plaque for
each species was calculated.
Biofilm Folin-protein was measured

(C.V. 2%) (22) and its percentage of wet
weight calculated. Direct potential meta-
bolic interactions of the lactobacilli with
the coculture species were examined by
cross-streaking on TSBYK-B plates and
by a deferred antagonism assay (2). The
degree of in vitro coaggregation between
bacterial pairs of the lactobacilli with
A. gerencseriae, A. naeslundii, S. mutans
or V. parvula was assessed visually and
assigned a score from 0 (homogeneous
suspension) to 4 (clear suspension and
large settled cell aggregates) (5).

Results

L. rhamnosus formed a pallid (Fig. 1),
very thin (average depth <20 lm/mm2)
biofilm (Table 1). The mono-culture bio-
films of A. naeslundii and A. gerencseriae
(in Experiment I) and the coculture bio-

films for both Lactobacillus species were
substantial, with well-defined ‘micro-
colony’ clumps giving a cauliflower-like
appearance (Fig. 1). The amount of
L. rhamnosus in the coculture with each
of the Actinomyces species in both experi-
ments was 7–20 · greater than in its
mono-culture biofilm. Biofilm cell protein
concentration was also higher in the
cocultures. The L. plantarum mono-culture
biofilm was 5 · larger (average depth
�100 lm/mm2), than the L. rhamnosus
mono-culture (Fig. 1, Table 1). L. planta-
rum biofilm growth increased in the
presence of the Actinomyces species by
4–7-fold. Again, biofilm cell protein con-
centration increased. A. naeslundii, and to
a lesser extent A. gerencseriae, were
inhibited by L. rhamnosus (Experiment I).
Both lactobacilli caused slight inhibition of
each Actinomyces species when examined
by cross-streaking on plates and in the
deferred antagonism assay.
In Experiment II, the biofilm growth-

stimulation of Lactobacilli species by
Actinomyces species coculture was com-
pared with the effects of coculture with
S. mutans and V. parvula (Fig. 1, Table 1).
The S. mutans cocultures produced smaller
biofilms than did Actinomyces cocultures
(P <0.01). S. mutans induced at least a
5-fold increase in the total amount of
L. rhamnosus present, comparable to
A. naeslundii, and increased the amount
of L. plantarum 2–4-fold, also increasing
biofilm cell protein concentration. Co-
culture with V. parvula had almost no
effect on the amount of either Lactobacilli
species present and V. parvula dominated
the biofilm. Both lactobacilli caused
growth promotion of V. parvula when
examined by cross-streaking on plates and
in a deferred antagonism assay. No coag-
gregation was observed between the lacto-
bacilli and any of the coculture species.

Discussion

Under the conditions described,
L. rhamnosus and L. plantarum failed to
form substantial biofilms in mono-culture.
When present with either A. naeslundii or
A. gerencseriae they were able to prolif-
erate and accrue in a large biofilm and, as
evident from the biofilm protein concen-
tration, at a higher cell density than the
mono-culture. Greater promotion of bio-
film growth was seen with L. rhamnosus
than with L. plantarum but the absolute
increase in CFU was greater for L. plan-
tarum. Overall, A. gerencseriae pro-
duced greater growth promotion than
A. naeslundii. The Lactobacillus species
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Fig. 1. Photographs of biofilm mono-cultures of L. rhamnosus (Lr), L. plantarum (Lp), A. naeslundii (An), A. gerencseriae (Ag), and the co-cultures of
the Lactobacilli with A. naeslundii (An), A. gerencseriae (Ag), S. mutans (Sm) and V. parvula (Vp). The asterix denotes biofilms from Experiment I, the
rest were from Experiment II. The diameter of the coverslip was 25 mm.
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did not coaggregate with the Actinomyces
species and hence other mutualistic
mechanisms were involved. It is possible
that the Actinomyces species provided a
biofilm matrix that encouraged growth of
the lactobacilli.
Successful coculture biofilms following

failure to establish a substantial mono-
culture biofilm with human saliva as the
growth medium has been reported for
other oral bacteria, including Porphyro-
monas gingivalis and Streptococcus
gordonii DL1 (6). However, in coculture,
S. gordonii provided coadherence attach-
ment sites that enabled P. gingivalis to
colonize and accumulate. Species-specific
coculture biofilm growth has also been
demonstrated with coaggregating species
of A. naeslundii and Streptococcus oralis,
which were only able to grow with human
saliva as the sole nutrient source when in
coculture (16). The other test species, S.
gordonii DL1, grown in mono- and cocul-
ture was not affected by the presence of
either of the other species (16). In the
present investigation some growth inhibi-
tion of A. naeslundii by the lactobacilli
was observed, which may have been
linked to bacteriocins and/or low pH
tolerance of organic acids (4, 7).
The ability to produce, tolerate or utilize

lactic acid is important in plaque biofilms
(4, 26). A. naeslundii can metabolize
lactate aerobically (4). In this study the
biofilm cultures were grown in an anaer-
obic environment. Coculture with the
lactate metabolizing bacterium V. parvula
produced no increase in biofilm growth of

the lactobacilli, hence it is unlikely that
lactate removal by Actinomyces accounted
for biofilm growth promotion of the lacto-
bacilli. Like the lactobacilli, S. mutans
produces lactate as a major end product of
metabolism, but it also promoted biofilm
growth of L. rhamnosus and L. plantarum.
These results suggest that lactate dynamics
were not involved in the biofilm growth
promotion of the Lactobacillus species.
In general, lactobacilli are major odon-

topathogens (12, 24). Our preliminary
studies using checkerboard DNA–DNA
hybridization analysis, however, suggests
that L. rhamnosus may be associated with
oral health rather than dental caries (23).
L. rhamnosus GG is also a well known
‘pro-biotic’ strain and recent evidence
suggests that it may promote and maintain
oral health in children and adults (1, 14).
In the present investigation L. rhamnosus
was able to establish as a biofilm with both
A. gerencseriae and A. naeslundii the
latter having been implicated in root caries
(3, 12). Enhanced biofilm growth was also
observed for L. plantarum, which is
implicated in caries (12, 23, 24). The role
of lactobacilli in plaque ecology and
disease may differ and intraspecies modi-
fications of their prevalence in plaque
biofilm may prove important.
This study demonstrates a species-spe-

cific biofilm growth promotion of import-
ant plaque species. There may be potential
for modulating the biofilm prevalence of
particular plaque species by targeting
partner species. This study also suggests
that the ability of individual bacteria to

form mono-culture biofilms is not neces-
sarily an indicator of their survival and
pathogenic potential in complex multispe-
cies plaque biofilm communities.
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