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Natural transformation is a genetically
regulated process in which a bacterium
takes up extracellular DNA and incorpor-
ates it into a genome by homologous
recombination (7, 15). Natural transfor-
mation has been found in a limited
number of species in the domains of
Bacteria and Archaea but not in Eukarya
(7, 15). There are two well-character-
ized natural transformation systems, the
gram-positive Streptococcus-Bacillus sys-
tem and the gram-negative Haemophilus-
Neisseria system (7, 15). More recently, a
third distinct natural transformation sys-
tem was identified in Helicobacter pylori
(25).
Gram-negative facultatively anaerobic

Actinobacillus actinomycetemcomitans is
a causative agent of periodontitis and non-
oral infections (2, 17, 24, 28). This
bacterium is naturally competent for trans-
formation and shares a similar transforma-
tion system with that found in
Haemophilus influenzae (29, 30). We
previously reported that two of 16

A. actinomycetemcomitans study strains
were naturally competent (29). However,
neither the genetic distinctions between
nor the clinical origins of competent and
non-competent strains were examined.
A complex and highly regulated pro-

cess, natural transformation is selected for
and maintained at a cost to the host
bacteria. The purpose of natural transfor-
mation is not fully understood (8, 15, 16,
20–23). Comparative studies of competent
and non-competent strains of the same
species might reveal the functional signi-
ficance of natural transformation and its
impact on the evolution of bacteria. We
therefore performed a pilot study to exam-
ine the clonal lineages, genotypes, and
disease association of competent and non-
competent A. actinomycetemcomitans
strains.
Sixty clinical A. actinomycetemcomitans

strains originating in Finland (n ¼ 38) and
the US (n ¼ 22) and seven laboratory
strains (ATCC 29522, 29523, 29524, and
33384, strains JP2, Y4, and HK1651) were

included in this study. The clinical isolates
were recovered from cultured subgingival
plaque samples and identified by conven-
tional means (4) and by 16S rRNA-based
polymerase chain reaction (PCR) analysis
(1). The periodontal diagnoses of the
subjects included aggressive periodontitis
(localized and generalized forms), chronic
periodontitis, and no periodontitis.
A. actinomycetemcomitans strains were

serotyped by the PCR method previously
described (11, 27). Arbitrarily primed-PCR
(AP-PCR) was used to distinguish geno-
types of A. actinomycetemcomitans strains
as described earlier (3, 6, 18).
The natural competence of A.

actinomycetemcomitans was determined
by an agar-based transformation assay as
described by Wang et al. (29). Briefly, A.
actinomycetemcomitans was cultured on
sTSB agar (Trypticase Soy Broth supple-
mented with 0.1% yeast extract, 5% heat-
inactivated horse serum and 1.5% agar) at
37�C in 5% CO2 overnight, and adjusted
with Trypticase Soy Broth to 1 · 109
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The competence for natural transformation was investigated in 67 Actinobacillus
actinomycetemcomitans strains. The transformation assays were performed with both
cloned DNA fragments and chromosomal markers of A. actinomycetemcomitans.
Competence was found in 12 of 18 serotype a strains, 0 of 21 serotype b strains, 0 of 14
serotype c strains, 3 of 6 serotype d strains, 3 of 4 serotype e strains, 0 of 3 serotype f
strains, and 0 of 1 nonserotypeable strain. The transformation frequencies varied from
5 · 10)3 to 4 · 10)6 (median 1.5 · 10)4). The distribution pattern of natural competence
is concordant with the major clonal lineages of A. actinomycetemcomitans. Serotype a
strains are predominantly competent for transformation, while serotypes b and c strains
are apparently non-competent.
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colony-forming units (CFU)/ml. A 20-ll
aliquot of the bacterial suspension was
spotted onto a prewarmed sTSB agar plate
and spread in a small area (diameter of
�10 mm). After incubation for 2 h, 10 ll
of the donor DNA at a concentration of
100 lg/ml was mixed with the A.
actinomycetemcomitans cells. The mixture
was further incubated for 5–6 h, washed off
the agar, and plated onto a suitable selective
agar to enumerate the transformants.
Both recombinant DNA and chromoso-

mal DNA of A. actinomycetemcomitans
were used as donor DNA for transforma-
tion. The recombinant DNA, designated
pilA¢-Sper-pilC¢, contains a cloned frag-
ment of pilABC of A. actinomycetemcom-
itans with the pilB gene replaced by a Sper

cassette (30). The DNA fragment pilA¢-
Sper-pilC¢ possesses two copies of the A.
actinomycetemcomitans uptake signal se-
quence (USS), which enhances the DNA
uptake by competent cells (29). Natural
competence was also determined using
genomic DNA of a NalrRifr mutant of A.
actinomycetemcomitans strain D17S (29).
Transformation frequency was calculated
as the number of transformants/CFU. The
lowest detection limit of the transformation
frequency was 2 · 10)7. Competence was
defined as a transformation frequency of
10)7 or higher.
Table 1 shows the competence of A.

actinomycetemcomitans strains in relation
to their serotype and the periodontal status
of the donor subjects. Since the study
strains had been selected based on their
serotype and mainly from patients with
aggressive periodontitis, the distribution
frequency of the serotypes is not likely to
represent the natural population of the A.
actinomycetemcomitans species. The se-
ven laboratory strains were listed sepa-
rately because these strains may have lost
certain phenotypes (e.g. natural compet-
ence) in the adaptation to laboratory
growth conditions.
Competent A. actinomycetemcomitans

strains were found in three serotypes: a,

d, and e. The proportions of the competent
strains were 67% (12/18) for serotype a,
50% (3/6) for serotype d, and 75% (3/4)
for serotype e. None of the strains of
serotypes b, c, and f (21, 14, and 3 strains,
respectively) were competent for transfor-
mation. The transformation frequencies of
competent A. actinomycetemcomitans
strains varied from 5 · 10)3 to 4 · 10)6

(median 1.5 · 10)4). Seventeen of the 18
competent A. actinomycetemcomitans
strains exhibited a greater than 10)5 trans-
formation frequency, which is at least 100
times greater than the detection limit of the
assay. The status of competence or non-
competence of A. actinomycetemcomitans
was dichotomous.
No significant association was found

between aggressive and chronic perio-
dontitis in the frequency distribution
of competent A. actinomycetemcomitans
strains (Fisher exact probability test,
P > 0.05) (Table 1). There were too few
strains in subjects without periodontitis
to determine whether the prevalence of
competent strains differed between
patients with or without periodontitis.
The results of the AP-PCR genotype
analysis of 15 competent strains and 8
non-competent strains are shown in
Table 2. Among the limited number of
strains examined, we did not detect
association between competence and
genotype of A. actinomycetemcomitans.
The population structure of A.

actinomycetemcomitans is clonal (3, 9,
10, 12, 19). The major clonal lineages of
A. actinomycetemcomitans (>80% of all
strains in the nature) are represented by
serotypes a, b, and c (3, 9, 10, 12, 19). In
this study, serotype a strains were predom-
inantly competent for transformation,
while none of serotypes b and c strains
of A. actinomycetemcomitans was trans-
formable. We have excluded several of the
following simplistic explanations for the
observations:
• the donor DNA may not be bound

and taken up efficiently by A. actin-

omycetemcomitans serotypes b and c
strains;

• the donor DNA may not recombine
into the genome of A. actinomycetem-
comitans serotypes b and c strains;

• the restriction and modification systems
of A. actinomycetemcomitans serotypes
b and c strains may degrade the donor
DNA originating from other serotypes.
All donor DNA used for transformation

contained USS sites, which should have
enhanced the uptake and binding of DNA
by competent A. actinomycetemcomitans
strains irrespective of their serotypes. The
donor recombinant DNA pilA¢-Sper-pilC¢
was derived from a highly conserved gene
cluster pilABCD of A. actinomycetemcom-
itans (30), and should have posed no
problem for recombination. The transfor-
mation assays in this study were per-
formed with PCR-amplified DNA (data
not shown), cloned DNA (from the
Escherichia coli host) and chromosomal
DNA of A. actinomycetemcomitans. No
significant variations were seen in the
transformation frequencies with respect to
the sources of the donor DNA (data not
shown). Also, it has been reported that
natural transformation of H. influenzae
was not affected by either type I or type
II restriction enzymes (26).
It is possible that all A. actinomyce-

temcomitans strains are competent for
transformation under some growth condi-
tions, and thus the results are of no great
biological relevance. On the other hand,
the results may imply significant biologi-
cal differences between competent (sero-
type a) and non-competent (serotypes b
and c) A. actinomycetemcomitans clones.
Competent A. actinomycetemcomitans
serotype a strains maintain a functional
transformation system for a purpose that
is either not met or met by the use
of different strategies in non-competent
serotypes b and c strains. Moreover,
competence is ostensibly a mechanism
for gene acquisition to improve genetic
fitness of bacteria (5, 13–15). The ability

Table 1. Competence of A. actinomycetemcomitans strains in relation to the serotype characteristics and periodontal status of the donors of the strains

Periodontal status of the
donors of the strains
or source of strains

No. of competent strains/Total strains
in serotype

Totala b c d e f xa

Aggressive periodontitis 7/12 0/10 0/8 2/4 1/1 0/3 0 10/38
Chronic periodontitis 4/4 0/2 0/5 0/1 2/3 0 0 6/15
No periodontitis 0/1 0/4 0 1/1 0 0 0/1 1/7
Common laboratory strains 1/1b 0/5c 0/1d 0 0 0 0 1/7
Total 12/18 0/21 0/14 3/6 3/4 0/3 0/1 18/67
aCould not be serotyped by PCR analysis.
bATCC29523.
cATCC29522, ATCC29524, HK1651, JP2, Y4.
dATCC33384.
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and the mechanisms for adaptation to
drastic environmental changes may differ
between competent and non-competent
A. actinomycetemcomitans strains. The
functional significance of natural compet-
ence and its impact on the genome of
A. actinomycetemcomitans remain to be
determined.
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Table 2. The AP-PCR analysis of selected
competent and non-competent A. actinomyce-
temcomitans strains

Serotype

AP-PCR genotype (no. of isolates)

Competent Non-competent

a I (11) I (4)
d XXII (1), V (1) V (3)
e VI (1) XI (1)
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