
Periodontitis is an infectious disease
caused by predominantly gram-negative,
anaerobic bacteria, among which Porphy-
romonas gingivalis is the most strongly
linked (18, 56). The disease causes
destruction of the periodontal ligament
and the alveolar bone housing the teeth
and is a major cause of tooth loss (40).
Prevalence of the disease is high in the
USA and most other industrialized coun-

tries. Periodontitis affects about 35% of
Americans aged 18–65 years, and disease
of sufficient severity to endanger the
dentition in the absence of treatment is
seen in approximately 13% (1). The pre-
valence of the disease may have decreased
in the 1990s (7). Although successful
treatment is possible, it is costly, of limited
availability, unsuccessful in many cases
and may be painful.

Development of a vaccine for the pre-
vention and control of periodontitis
appears to be possible. Studies conducted
in rodents have demonstrated that alveolar
bone destruction can be inhibited by
immunization (5, 17, 22, 23, 37, 38, 41,
47, 60). Using a vaccine containing intact
killed P. gingivalis as antigen and Syntex
Adjuvant Formulation-M (SAF-M adju-
vant), Persson et al. (41) were able to
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Introduction: Periodontitis is a common infectious disease to which Porphyromonas
gingivalis has been closely linked, in which the attachment tissues of the teeth and their
alveolar bone housing are destroyed. We conducted a study to determine if immunization
using a purified antigen could alter the onset and progression of the disease.
Methods: Using the ligature-induced model of periodontitis in Macaca fascicularis, we
immunized five animals with cysteine protease purified from P. gingivalis and used an
additional five animals as controls. Alveolar bone loss was measured by digital
subtraction radiography.
Results: Immunization induced high titers of specific immunoglobuin G serum
antibodies that were opsonic. Total bacterial load, levels of P. gingivalis in subgingival
plaque and levels of prostaglandin E2 in gingival crevicular fluid were significantly
reduced. Onset and progression of alveolar bone loss was inhibited by approximately
50%. No manifestations of toxicity were observed.
Conclusions: Immunization using a purified protein antigen from P. gingivalis inhibits
alveolar bone destruction in a ligature-induced periodontitis model in M. fascicularis.
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inhibit the progression of experimental
periodontitis in the non-human primate
Macaca fascicularis, as measured by radi-
ographic assessment of alveolar bone loss.
Thus, although periodontitis in humans
and most other species appears to be a
polymicrobial infection, alveolar bone
loss, its predominant pathological feature,
can be inhibited by vaccination using a
single bacterial species, formalinized
P. gingivalis, as antigen.
The next logical step in vaccine devel-

opment was to identify and test a purified
antigen from P. gingivalis that, when used
in a vaccine, can induce protection. Of all
of the P. gingivalis components studied to
date, the cysteine proteases (porphypains,
gingipains) have shown the most promise.
The cysteine proteases are present in large
quantities on the cell surface of P. gingi-
valis (28), and they account for much of
the proteolytic, hemagglutinin and adhesin
activities of this species (44–46). They can
not only degrade proteinase inhibitors,
immunoglobulins and iron transporting
and sequestering proteins but also activate
the complement, coagulation and kinin
cascades and destroy bactericidal proteins
and peptides (27, 44, 46, 48, 57). Cysteine
proteases appear to be present in all clonal
types and serotypes of P. gingivalis studied
and no cysteine protease-negative clones
have been reported except for laboratory-
generated mutants. Furthermore, local
application in humans of anti-P. gingivalis
monoclonal antibodies specific for an
epitope present in cysteine proteases pre-
vented recolonization by P. gingivalis for
up to 9 months (6).
The purposes of the present study were

to determine whether a vaccine containing
purified cysteine protease from P. gingiva-
lis could induce protection against experi-
mental peridontitis in M. fascicularis, to
assess safety and to obtain sufficient data to
design a larger and more definitive study.

Materials and methods

Animal screening and enrollment

The protocol was approved by the Animal
Care Committee of the Health Sciences
Center, University of Washington,
Seattle, WA. Young adult male and female
M. fascicularis monkeys were obtained
through the National Primate Research
Center of the University of Washington,
and were housed in that facility. The
animals had been released from quaran-
tine, acclimated and tested by Primate
Center staff. Only retrovirus D- and
tuberculosis-negative animals that had
passed a general examination by a veter-

inarian and had received no antibiotic
treatment for the previous 3 months were
considered for screening.
Animals selected for screening were

sedated as described below, weighed and
visually examined for injuries, coat quality
and overall condition. An oral examination
was performed, subgingival plaque and
venous blood were sampled and analysed,
and periapical radiographs were taken as
described below. Enrollment criteria are
described in Table 1. Qualifying animals
were randomized into an experimental (to
be immunized) group and a control group
of five animals each. General health and
well-being of the animals were monitored
and maintained by staff veterinarians at the
Center.

Clinical and radiographic examination

and tooth ligation

The study protocol was the same as that
described by Persson et al. (41) with minor
modifications, except that cysteine protease
(porphypain) purified from P. gingivalis
instead of intact formalin-killed P. gingiva-
lis was used as antigen (11) (Fig. 1).
Throughout the study animals were sedated
by administering 10 mg/kg ketamine, sup-
plemented with the same drug as needed
during the examination and data gathering
procedures. At each examination animals
were weighed and their overall health was
assessed. Oral examination consisted of
examination of the teeth, oral mucosa and
tongue and recording missing teeth and the
extent of gingival inflammation (30); pro-
bing pocket depth and attachment levels at
four positions around each mandibular and
maxillary posterior tooth were measured
using a hand-held pressure-controlled digi-
tal probe (Florida probe; Florida Probe
Corp., Gainesville, FL). Bleeding on pro-
bing was recorded as yes or no for each site.
At week l6, subgingival ligatures were

placed on the mandibular molars and
premolars using 000 braided silk suture
material (Ethicon; Johnson and Johnson,
Somerville, NJ) as described previously
(41). At each examination, ligatures were

checked and, if loose or missing, they were
replaced. All investigators, except the
person who prepared the vaccines, were
blinded throughout the study as to which
animals received complete vaccine and
which did not.
At the times indicated in Fig. l, periap-

ical radiographs of the maxillary and
mandibular posterior teeth were taken
using Kodak ultra-speed type D pediatric
film and a Trophy ETX X-ray machine
(Vincennes, France) at a distance of
60 mm at 70 kVp and 8 mA with a 0.25-
s exposure. All films were developed using
the same automatic processor (Dent-X,
Elmsford, NY). Changes in alveolar bone
height around the test teeth were deter-
mined by digital subtraction radiography
as described by Jeffcoat et al. (21) and
used as the primary outcome measure.

Sample collection

At each time-point noted in Fig. 1 plus
days 1 and 2, 10-ml samples of venous
blood were drawn and allowed to clot, and
serum was prepared by centrifugation.
Serum samples were separated into aliqu-
ots and stored at )70�C until assayed.
Gingival crevicular fluid was sampled
from test teeth before harvesting the sub-
gingival flora or probing using filter paper
strips as described previously (41).

Table 1. Enrollment criteria

Estimated age 4–8 years; weight 3–6 kg
All molar and premolar teeth present
Early to moderate gingival inflammation
No probing depths ‡4 mm
No manifestations of oral or systemic disease
No radiographic periapical lesions
Presence of Porphyromonas gingivalis and at least three of the other five microorganisms
being monitored
Serum immunoglobulin G titers of anti-P. gingivalis antibodies between 2 and 25 ELISA units
Pregnant or lactating animals excluded.

Fig. 1. Protocol outline with time-points in
weeks. Samples of blood, subgingival plaque
and saliva were harvested at all time-points.
Additional blood samples were taken at weeks
1, 2 and 6. Control and immunized animals were
vaccinated at baseline and at weeks 3, 6 and 16
as indicated (vertical bars). Ligatures were
placed around mandibular and maxillary pos-
terior teeth at week 16 (dot). Radiographs of the
mandibular teeth were taken at baseline and at
weeks 16, 30, 36 and 44 (X) and the ligated
teeth were supra-infected with viable Porphyro-
monas gingivalis at weeks 36 and 40.
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Samples were stored )70�C. The subgin-
gival flora were sampled from molars and
premolars in each quadrant using paper
points as described previously (41).
Approximately 100 ll saliva was harves-
ted using a microliter pipette and stored at
)70�C.

Immunizations and super-infection

Porphypain was purified chromatographi-
cally from P. gingivalis strain W12 (11).
The enzyme activity was irreversibly inac-
tivated by precipitation with trichloroacetic
acid, and the proteins were washed with
ethanol and dissolved in 50 mm Tris buffer
at pH 7.4. At the time the study was
performed, porphypain-1 and porphypain-
2 had not been successfully separated. The
preparation we used contained both
150 kDa porphypain-1 and 120 kDa por-
phypain-2 at a protein concentration of
0.842 mg protein/ml. The preparation was
shipped to our laboratory frozen. It was
diluted to 42.85 lg/ll with 50 mm Tris
buffer at pH 7.4, separated into portions
needed for each immunization and stored
at )20�C. A single batch of antigen was
used for the entire experiment. The adju-
vant used, SAF-M (2), was kindly provi-
ded by Dr A.C. Allison. It consisted of
termutide powder (threonyl murymal
dipeptide) and a liquid containing l-plu-
ronic 121, squalene and Tween-80. These
were stored at 4�C.
The vaccine was formulated as follows

at the time of use and was not stored:
0.2 mg termutide was added to 0.325 ml
of the liquid; this was combined with an
aliquot of the antigen solution containing
75 lg porphypain in 0.175 ml. The sus-
pension was well mixed and 0.25 ml was
injected subcutaneously in the skin of the
back near the scapula and 0.25 ml into the
deltoid muscle of the arm. Animals were
vaccinated at baseline with booster injec-
tions at weeks 3, 6 and 16. The control
vaccine was formulated and administered
in an identical manner except that buffer
with no antigen was added to the prepar-
ation.
At weeks 32 and 36, the ligated teeth

were super-infected by application of
viable P. gingivalis (strain #5083 originally
isolated from M. fascicularis) bacteria
using a cotton swab. Bacteria to be used
for super-infection were grown on
blood agar plates as follows. A loop of
P. gingivalis was applied to approximately
three-quarters of each plate using a zig-zag
motion; two isolation strips were placed on
the remainder of the plate, and a loop full
of a coagulase-positive Staphylococcus

was touched to the plate surface at four
locations sufficiently distant from P. gin-
givalis to ensure that cross-contamination
did not occur. Staphylococcus serves as a
growth enhancer for P. gingivalis. The
plates were incubated for 4 days. Bacteria
were removed from the plates using a
cotton swab and applied directly to the
teeth of the sedated animals using one
plate for two teeth.

Laboratory studies

Subgingival plaque samples were ana-
lysed using specific DNA probes (12, 33)
as described previously (41). A universal
bacterial probe was used to measure total
bacterial load, and species-specific probes
were used to measure levels of P. gingi-
valis, Tannerella forsythia, Prevotella
intermedia, Campylobacter rectus, Fuso-
bacterium nucleatum and Actinobacillus
actinomycetemcomitans. Titers of serum
immunoglobulin G antibodies and serum
and salivary IgA antibodies reactive with
antigens of P. gingivalis were determined
by enzyme-linked immunosorbent assay
using microtiter wells coated with soni-
cates of the monkey isolate of P. gingi-
valis strain 5083 as described previously
(53). Specific antibody titers were calcu-
lated as described by Peterman and
Butler (42). Western immunoblots were
prepared as described by Nakagawa et al.
(35) using immune and preimmune sera
and arg-gingipain (HrgpA) and lys-gingi-
pain (Kgp) purified from P. gingivalis
strain HG66 (43) (kindly provided by Dr
James Travis and Dr Jan Potempa,
Department of Biochemistry and Molecu-
lar Biology, University of Georgia, Ath-
ens GA).
Levels of prostaglandin E2 in gingival

crevicular fluid were measured using com-
petitive inhibition kits (Amersham Life
Sciences, Little Chalfont, Buckingham-
shire, UK) following the instructions of
the manufacturer.
Chemiluminescence, a measure of ops-

onization of target bacteria by a specific
immunoglobulin G antibody, was deter-
mined as described by Easmon et al. (13)
and modified by Nakagawa et al. (35).
Blood was drawn from a healthy, perio-
dontally normal adult male, and polymor-
phonuclear leukocytes were isolated from
the heparinized blood using Mono-Poly
Resolving Medium (ICN Biomedical
Corp., Costa Mesa, CA). Controls inclu-
ded tubes with polymorphonuclear leuko-
cytes or bacteria only, polymorphonuclear
leukocytes plus bacteria, and polymorpho-
nuclear leukocytes plus bacteria plus pre-

immune sera. Immune sera from
experimental weeks 6, 20, 24 and 44 were
tested in triplicate for all control and
immunized animals. Laboratory studies
were repeated a minimum of three times
and representative data are shown.

Data analysis

Given the small number of animals in the
study, all statistical comparisons between
immunized animals and controls were
performed using the Wilcoxon rank sum
test. A non-parametric test procedure based
on ranked data, and exact methods were
used to compute the statistical significance
(SAS Version 9.1 software; SAS Institute,
Inc., Cary, NC). Correlation analysis was
used to assess the relationship between
chemiluminescence and bone loss.

Toxicity evaluation

Vaccine injection sites were marked with a
black ink dot and visually evaluated for
swelling, ulceration and induration. Fol-
lowing inoculation and data collection at
week 16, biopsy specimens were harvested
from some injection sites at 24 h and from
others at 72 h for histological evaluation.
Serum samples harvested at week 44 were
transported to the clinical laboratories at
the University of Washington Medical
Center where general serum chemistry,
liver panel, renal panel, parathyroid cal-
cium and phosphate and blood lipids were
measured.

Results

The experimental and control animal
groups each contained one male and four
female animals. Mean animal weights at
baseline were 5.0 (±1.1) and 4.5 (±1.3) kg
for the control and immunized animal
groups respectively and they did not differ
significantly. At week 44, none of the
animals had lost weight. There were no
visual signs of swelling, acute inflamma-
tion, induration or ulceration at the injec-
tion sites, and histological evaluation of
biopsies taken at days 1 and 3 post
vaccination failed to reveal an inflamma-
tory infiltrate (data not shown). Through-
out the course of the study, there were no
indications of malaise, change in coat
quality or color, or loss of appetite in any
of the animals. None of the laboratory
values for general serum chemistry, liver
panel, renal panel, parathyroid calcium and
phosphate, and blood lipids for the two
animal groups differed significantly
(P > 0.05; data not shown).
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Mean titers of serum immunoglobulin
G antibody reactive with antigens of
P. gingivalis 5083, a strain isolated origin-
ally from the oral cavity of M. fascicularis,
are shown in Fig. 2. In sera from the
immunized animals, mean titers increased
by week 2, peaked at week 6, then began
to decrease. Following the booster injec-
tion at week 16, values rose to a maximum
at week 20 then decreased, but remained
above control values through week 40. As
indicated by the error bars, there was a
great deal of variation among the animals
in the magnitude and time to peak titers.
An increase in specific antibody titers in
the serum of control animals was seen
following placement of the ligatures.
Using immunoblots, we demonstrated that
the induced serum antibodies bound to cys-
teine proteases isolated from P. gingivalis,
to components in sonicates of P. gingivalis
strain W12, the strain from which the
antigen used was isolated, and to compo-
nents in sonicates of P. gingivalis strain
5803, the monkey strain likely to
be involved in causing periodontitis in
M. fascicularis (data not shown).
Enhancement of specific IgA antibodies

was observed in the sera of some, but not
all, of the immunized animals but titers
were very low and variable from one
animal to another (data not shown).
Enhancement of specific IgA antibodies
could not be demonstrated in saliva from
the immunized animals by the methods we
used.
Immunization appeared to affect total

subgingival bacterial load as well as values
for P. gingivalis and some of the other
species that were monitored. When calcu-
lated as change from baseline for weeks
3–16 and 20–32 total subgingival bacterial
loads for immunized animals relative to

controls were significantly reduced
(P ¼ 0.008) (Fig. 3).
Before the placement of ligatures

(weeks 3–16) and 2 weeks after ligature
placement (week 20), values for P. gingi-
valis were reduced significantly relative to
controls (P ¼ 0.032) (Fig. 4). For weeks
36–44, values were similar for immunized
and non-immunized animals, most likely
because that was the period of super-
infection with living P. gingivalis. At week
20, C. rectus was also reduced signifi-
cantly (P ¼ 0.008) in samples from the
immunized animals. There were no immun-
ization effects on T. forsythia, A. actin-
omycetemcomitans, P. intermedia or
F. nucleatum when values for samples
from control and immunized animals were
compared statistically (data not shown).
Results of the radiographic alveolar

bone height measurement for ligated teeth
in control and immunized animals are
shown in Fig. 5. Mean and median loss in
alveolar bone height from the time of

tooth ligation at week 16 to weeks 36 and
44 were reduced more than 50% in the
immunized animals relative to the con-
trols (P ¼ 0.0079), and the extent of
reduction among animals was quite uni-
form. It is notable that during the period
of super-infection from week 36 to 44,
alveolar bone loss advanced considerably
in the control animals but only slightly in
the immunized animals. Before ligature
placement at weeks 12–16, mean attach-
ment loss was significantly less for vac-
cinated ()0.39 mm) than for control
() 0.72 mm) animals (P ¼ 0.05) (data
not shown).
Prostaglandin E2 levels in gingival cre-

vicular fluid samples from ligated teeth in
immunized animals were significantly
reduced relative to values for control
animals at weeks 16, 20 and 36
(P < 0.05), but not at week 44 (Fig. 6).
There was a direct, site-specific association
between prostaglandin E2 levels in gingi-
val crevicular fluid and the presence and
extent of alveolar bone lost as measured by
digital subtraction radiography; higher
levels of prostaglandin E2 related strongly
to higher levels of bone loss (Fig. 7).
Chemiluminescence measurements were

performed using P. gingivalis strain 5083
as the target organism and using preim-
munization and week 6, 20, 24 and 44 sera
from all control and immunized animals.
Chemiluminescence is a measure of spe-
cific enhancement of phagocytosis by anti-
P. gingivalis antibody and of killing of
P. gingivalis by phagocytes. Chemilumi-
nescence was enhanced by immune relat-
ive to control sera for all five animals, but
the mean differences were statistically
significant only for the 20-week samples
(P < 0.05) (Fig. 8). In the 20-week sam-
ples, chemiluminescence was much lower
for sera from control animals relative to
immunized animals. For immunized
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Fig. 3. Changes in total bacterial load for
control (mean ± SE, black bars) and immunized
animals (mean ± SE white bars) as determined
using the universal DNA probe and reported as
lg total bacterial nucleic acid.
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animals, the extent of bone loss decreased
linearly with increasing chemilumines-
cence (r ¼ ) 0.9) (Fig. 9).
That was not the case for the 20-week

samples from non-immunized animals
(P ¼ 0.35 for week 36; P ¼ 0.95 for
week 44). Enhancement of chemilumines-
cence by immune sera was not altered by
prior inactivation of complement (data not
shown).

Discussion

There are compelling reasons for the
development of an anti-periodontitis vac-
cine. Periodontitis afflicts millions of peo-
ple worldwide (1, 7, 8, 32). Not only is it a
major cause of tooth loss, but also recent
evidence indicates that periodontitis signi-
ficantly enhances risk for several poten-
tially disabling and fatal systemic diseases
and conditions including heart disease,
stroke, complications of diabetes and
low-birthweight premature infants (3). In

addition, existing treatments fail to control
the progression of the disease in more than
10% of cases (19, 20, 31). A successful
vaccine offers the most direct and cost-
effective pathway to a reduction in the
prevalence of periodontal disease in large
populations and may provide an effective
therapy for cases that do not respond to
traditional therapies.
The infectious nature of periodontitis

(18, 56), characteristics of the immune
response in periodontitis patients (9, 37,
55) and vaccination studies conducted in
rodents (17, 22, 23, 38, 47) and in non-
human primates (34, 41) indicate that
development of a successful vaccine for
humans may be possible. The immuniza-
tion experiment reported here was
designed to determine whether a vaccine
containing a purified P. gingivalis compo-
nent as antigen could induce protection
against periodontitis in a non-human pri-
mate model, to obtain preliminary data on
the safety of the vaccine and to obtain

sufficient data to design and conduct a
larger and more definitive study. Our
observations support the idea that a safe,
effective anti-periodontitis vaccine can be
developed.
We successfully demonstrated the prin-

ciple that although periodontitis is consid-
ered to be a polymicrobial infection, a
vaccine containing cysteine protease puri-
fied from P. gingivalis as antigen can
significantly inhibit the induction and
progression of the disease as measured
by radiographic alveolar bone loss in
experimental periodontitis in M. fascicu-
laris. In addition, our evidence, although
not definitive, indicates that the vaccine is
non-toxic and safe. The pattern and mag-
nitude of immunoglobulin G antibody
response were very similar to results of a
previous study using the same animal
model and a vaccine containing intact
formalin-killed P. gingivalis (41) but con-
trast with those in a report by Ebersole
et al. (14).
Our study was similar to that conducted

by Moritz et al. (33) in that we used the
same antigen preparation and animal
model but our study design and outcomes
were somewhat different. Moritz et al. (34)
used a split mouth design, fed a soft diet to
induce gingivitis before placing ligatures
and used Freund’s incomplete adjuvant,
while we used mandibular posterior teeth
as test teeth without a split mouth, fed a
standard monkey chow diet and used an
adjuvant, SAF-M, that has been used in
humans. The outcomes were similar with
regard to the overall immune response and
effect of immunization on suppressing
alveolar bone loss. However, we observed
a greater effect of the vaccine on suppres-
sing alveolar bone loss and on reducing
levels of plaque and P. gingivalis. In
addition, we found evidence that a reduc-
tion in prostaglandin E2 levels in gingival
crevicular fluid and antibody-mediated
enhancement of phagocytosis and killing
of bacteria may underlie the immunization
effects.
The potential of numerous purified

components of P. gingivalis for use as
antigen in an anti-periodontitis vaccine
have been evaluated. These studies have
included lipopolysaccharide (9, 50, 58),
carbohydrate K surface antigens (10, 25,
26, 51, 54), various proteins including
fimbriae and fimbrillin and the 53- and
67-kDa surface proteins (15, 16, 24, 29, 59,
61), and cysteine proteases (11, 28, 43). Of
the P. gingivalis components studied, cys-
teine protease appears to be the only one
that is expressed by all 50 or more
genetically distinct P. gingivalis types.
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Fig. 9. The relationship between opsonic activ-
ity (mV) and alveolar bone loss (mm) for sera
from control and immunized animals; r ¼ )0.9
for immune sera (P ¼ 0.083); r ¼ ) 0.1 for
control sera (P ¼ 0.95).

Fig. 8. Mean chemiluminescence reported as
mean peak mV for control cultures containing
polymorphonuclear leukocytes alone and poly-
morphonuclear leukocytes plus Porphyromonas
gingivalis (Pg) and experimental cultures con-
taining polymorphonuclear leukocytes, Pg and
preimmune sera (Pre) or immune sera from
weeks 6, 20, 24 and 44. Black bars represent
sera from control animals and stippled bars
represent sera from immunized animals.
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The vaccine appeared to reduce alveolar
bone loss by more than 50%. Although the
number of animals studied was small, the
magnitude and uniformity of the reduction
in bone loss resulted in strong statistical
significance (P ¼ 0.0079). The extent of
the reduction was greater and more uni-
form among animals than observed previ-
ously using the whole cell vaccine (41).
The uniformity of the reduction in bone
loss among the immunized animals was
striking relative to the previous study (41)
in which a great variation in inhibition of
bone loss among the animals was
observed.
Our data suggest two possible pathways

by which specific antibodies may attenuate
alveolar bone loss. Serum immunoglobulin
G antibodies induced by the vaccine were
opsonic and opsonic activity persisted
throughout the study period. These anti-
bodies were present in the gingival cre-
vicular fluid (49), an exudate that
originates from inflamed small blood ves-
sels, traverses the tissue to enter periodon-
tal pockets where it bathes the subgingival
bacterial biofilms. Thus, one mechanism of
immune protection may be a reduction in
P. gingivalis and in total bacterial load by
antibody-mediated enhancement of phago-
cytosis and killing of bacteria by polymor-
phonuclear leukocytes and other
phagocytes. The observed reduction in
P. gingivalis in subgingival plaque and in
total plaque load supports this idea.
Reduction in levels of prostaglandin E2

may provide a second mechanism whereby
immunization may attenuate alveolar bone
destruction. Prostaglandins are major
mediators of bone resorption at sites of
inflammation where they induce differen-
tiation and maturation of osteoclasts and
these cells resorb alveolar bone (52). Large
amounts of prostaglandin E2 are present in
gingival crevicular fluid and inflamed
periodontal tissue (39). Activated macr-
ophages and fibroblasts are a major source
of prostaglandin E2 (36, 48). Levels of
prostaglandin E2 in the gingival crevicular
fluid, and presumably in the periodontal
tissue, were significantly reduced in the
immunized relative to the control animals,
especially through week 36, and the site-
specific level of prostaglandin E2 strongly
related to the extent of bone loss at each
site. Immune, but not control or preim-
mune, sera were able to inhibit prostaglan-
din E2 production by human monocytes
activated with P. gingivalis lipopolysac-
charide (4). Inhibition was antigenically
specific and did not occur when monocytes
were activated with lipopolysaccharide
from E. coli. Thus, elevated levels of

antibody specific for P. gingivalis in the
inflamed periodontal tissues may suppress
alveolar bone resorption by inhibiting
prostaglandin E2 production.
In summary, although periodontitis is a

chronic polymicrobial infection, previous
studies in rodents and non-human primates
have shown that immunization using a
single microorganism, P. gingivalis, as
antigen can provide protection. The pre-
sent study shows that purified protein
antigens from P. gingivalis can also pro-
vide protection as measured by reduction
in alveolar bone destruction. Similar
results have been reported by others (34).
Possible mechanisms of immune protec-
tion appear to be specific antibody-medi-
ated enhancement of phagocytosis of
P. gingivalis and specific antibody-medi-
ated inhibition of production of prosta-
glandins by resident fibroblasts and
macrophages in the gingival tissue. Fur-
thermore our data, although not definitive,
suggest that the vaccine is safe.
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