
Oral candidiasis is a common opportunis-
tic infection in immunocompromised pop-
ulations (27). Candida albicans is the most
prevalent and best studied etiological agent
associated with this infection, accounting
for 70–80% of organisms isolated form
oral mucosal lesions (26, 28). However, in
the past two decades, Candida glabrata
has emerged as a notable pathogenic agent
in the oral mucosa, frequently being co-
isolated with C. albicans (24–26). Mean-
while, reports of C. glabrata being the
only detectable species from oral lesions
have also been rising steadily (24–26).
This is particularly important because
C. glabrata isolated from oral lesions is
much more resistant to standard antifungal
treatment than C. albicans (24, 26). As a

result, C. glabrata oral infection is sus-
pected in most cases when the patient does
not respond to routine doses of fluconazole
(25).
Oral epithelial cells play several import-

ant roles in the host defense against
Candida infection. Integrity of the epithe-
lial layer is required for the confinement of
C. albicans in the superficial mucosal
layers because removal of the epithelium
before experimental yeast inoculation
leads to rapid connective tissue invasion
(14). In addition to maintaining an intact
invasion barrier, oral epithelial cells can
regulate the inflammatory host responses
to Candida by releasing a wide array of
chemotactic (8, 30, 31) and priming (10,
25, 35) molecules for innate immune

effector cells. As the best studied Candida
species, C. albicans is a potent inducer of
several immunomodulatory cytokines,
such as interleukin-1a (IL-1a) and IL-8,
in human oral keratinocytes (7, 27, 32).
Furthermore, the generation of these cy-
tokines by C. albicans-infected oral epi-
thelial cells promotes the antifungal
activity of polymorphonuclear leukocytes
in vitro, which are among the most
important immune effector cells in the
host defense against Candida infection
(10).
Although C. glabrata has been implica-

ted in the pathogenesis of oral candidiasis
in several categories of immunosuppressed
patient, little is known about the outcome
of the interaction between C. glabrata and
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Background: Oropharyngeal candidiasis is a common opportunistic infection and
Candida glabrata is the second or third most frequently isolated species from
oropharyngeal candidiasis lesions, after Candida albicans. The aim of this study was to
study the cytokine-inducing and cell-damaging potential of C. glabrata in oral epithelial
cells and compare this to C. albicans.
Methods: Oral epithelial cell lines and primary gingival epithelial cells were cocultured
with C. glabrata strains GDH2269 and 94-11 or C. albicans strains SC5314 and
ATCC28366. Supernatants were analysed for the presence of interleukin-1a (IL-1a), IL-8
and granulocyte–macrophage colony-stimulating factor (GM-CSF) by enzyme-linked
immunosorbent assay. The cytotoxity of different strains was determined using the
CytoTox-96 assay.
Results: Compared to C. albicans, C. glabrata induced different proinflammatory
cytokine responses in oral epithelial cells; a high level of GM-CSF induction was only
detected in C. glabrata-infected cells and not in C. albicans-infected cells, regardless of
the origin of these cells (cell lines or primary cells) or the strain used. Like C. albicans,
C. glabrata induced an IL-1a response by oral epithelial cells, but this response was both
strain-dependent and epithelial cell origin-dependent. Unlike C. albicans, C. glabrata
failed to induce a strong IL-8 response in any of the cell systems studied. Finally, in these
studies C. glabrata showed lower cytotoxicity than C. albicans.
Conclusions: C. glabrata is less cytotoxic than C. albicans and induces different
proinflammatory cytokine responses in oral epithelial cells.
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oral mucosal cells in vitro. Given the
scarcity of information in the field, we
sought to study the cytokine-inducing and
cytotoxic potential of C. glabrata using a
C. glabrata–oral epithelial cell coculture
in vitro system, and to compare it to
C. albicans.

Materials and methods

Organisms

C. glabrata strains GDH2269 and 94-11
were obtained from the American Type
Culture Collection (ATCC, Rockville,
MD). Both strains were isolated from
human oral cavities. C. glabrata strain
MRL2302 was isolated from a patient with
esophageal candidiasis and was kindly
provided by Dr M. Ghannoum (Case
Western Reserve University, Department
of Dermatology). Two C. albicans strains
were used for comparison: C. albicans
strain SC5314 (kindly provided by Dr A.
Mitchell, Columbia University), which was
originally isolated from a patient with
disseminated candidiasis (13) and has the
ability to trigger high levels of proinflam-
matory cytokines and cell damage (8, 40);
and C. albicans oral strain ATCC28366,
which exhibits a moderate ability to do
trigger these in oral mucosal models in vitro
(9, 41). All of the strains used in this study
showed similar growth rates in the inocu-
lation media used for infection, as deter-
mined by direct cell counts of yeast cells
grown in these media, or by the 2,3-bis(2-
methoxy-4-nitro-5-sulfopheny)-5-[(phenyl-
amino) carbonyl]-2H-tetrazolium-hydroxide
(XTT) assay when germinated organisms
were tested. The organisms were routinely
propagated in Yeast Peptone Dextrose
or Sabouraud agar (Difco Laboratorie,
Detroit, MI), at 25�C.

Oral epithelial cell cultures

Oral keratinocyte cell lines and primary
gingival keratinocytes were used in this
study. Cell line SCC15, originated from a
well-differentiated squamous cell carci-
noma of the ventral tongue, was kindly
provided by Dr D. Wong (Harvard Uni-
versity). Cell line OKF6/TERT2 represents
normal oral mucosal epithelium and was
immortalized by overexpression of telom-
erase and deletion of the p16INK4a regu-
latory protein (6). Primary oral
keratinocytes were isolated from discarded
gingival tissues as described previously (8,
9). Keratinocytes were maintained in ker-
atinocyte serum-free medium (Invitrogen,
Carlsbad, CA), supplemented with 0.4 m
m CaCl2, 0.1 ng/ml epidermal growth

factor, 50 lg/ml bovine pituitary extract
(Invitrogen, Carlsbad, CA) and antibiotics
(penicillin/streptomycin, 100 U/ml and
100 lg/ml, respectively).

Coculture of C. glabrata and C. albicans

with oral epithelial cells

Stationary-phase yeasts were prepared by
growth for 18 h at room temperature in
yeast peptone dextrose broth (strains
GDH2269, 94-11, ATCC2269 and
SC5314) or Sabouraud broth (strains
GDH2269 and MRL2302) (Difco Labor-
atories, Detroit, MI), supplemented with
2% (weight/volume) glucose. In prelim-
inary experiments, C. glabrata strains
GDH2269 and MRL2302 were tested
with both types of broth and no difference
was observed in growth kinetics or
cytokine induction. The fungal cells
were harvested by centrifugation and
washed in phosphate-buffered saline. Sub-
sequently, yeast cells were counted in a
hemocytometer and adjusted to the final
concentration in complete keratinocyte
serum-free medium before adding to
epithelial cells.
Oral keratinocytes were seeded at or

near confluence in 24-well polystyrene
plates (Corning Incorporated, Corning,
NY) and were incubated overnight in
complete keratinocyte serum-free medium
at 37�C in 5% CO2. The following day the
media were discarded and the cells were
challenged with suspensions of stationary-
phase viable organisms at varying fungal
cell to host cell ratios, for up to 48 h.
Negative controls for these experiments
included uninfected cultures and Candida
alone. At the end of the experimental
period supernatants were collected and
stored at )70�C until assayed.

Cytokine detection

Cytokine protein array

Proinflammatory cytokines in culture
supernatants were detected using an
enzyme-linked immunosorbent assay
(ELISA)-based cytokine protein array
(Ray Bio cytokine array; RayBiotech,
Norcross, GA). Briefly, after membrane
blocking, 1 ml supernatant was added and
incubated for 2 h, followed by addition of
biotinylated detection antibodies at a
dilution of 4 : 1000. The membranes
were developed by addition of horserad-
ish peroxidase-conjugated streptavidin for
2 h and subsequent addition of an
enhanced chemiluminescence-type solu-
tion. The membranes were exposed to
X-ray film (Kodak BioMax film; Kodak,

Rochester, NY) for 1 min and processed
by autoradiography.

Enzyme-linked immunosorbent assay

To confirm the findings with cytokine
arrays, culture supernatants were analysed
by ELISA. In each experiment superna-
tants from two replicate wells were pooled
and assayed by duplicate sandwich ELI-
SAs using commercially available anti-
body pairs (Endogen MiniKit, Pierce,
Rockford, IL), as previously described
(7–9). Absorbance values and correspond-
ing cytokine concentrations were deter-
mined with an Opsys MR Microplate
reader (Dynex Technologies Inc., Chantil-
ly, VA) using the Revelation QuickLink�

software (Thermo Labsystems, Chantilly,
VA). The sensitivity of these assays ranged
between 8 and 16 pg/ml.

Assessment of cytotoxicity

The ability of Candida to injure oral
epithelial cells was assessed by the Cyto-
Tox-96� assay (Promega, Madison, WI),
which measures the release of lactate
dehydrogenase (LDH) from dying cells.
Total LDH released was quantified by
spectrophotometry, as described previ-
ously (9). Spontaneous release of LDH
by uninfected cultures, or by Candida
alone, incubated under identical conditions
was included as a negative control in each
experiment.

Statistical analyses

The statistical significance of the differ-
ences in cytokine levels and the cytotoxicity
between pairs of different Candida species
were determined by two-tailed t-test, assu-
ming equal variances. Differences were
statistically significant at P < 0.05.

Results

C. glabrata induced a proinflammatory

cytokine response by oral epithelial cells

To determine whether coculture of oral
epithelial cells with C. glabrata induces
the production of proinflammatory cytok-
ines, we infected epithelial cells with
various doses of yeast (ratios of 0.1, 1
and 10 yeast cells to epithelial cells) for up
to 48 h. The presence of IL-1a, IL-8 and
granulocyte–macrophage colony-stimula-
ting factor (GM-CSF) in culture superna-
tants was quantified by ELISA and verified
by a cytokine protein array. As shown in
Fig. 1, C. glabrata induced a dose-
dependent IL-1a response in SCC15 cells.
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It also triggered a significant GM-CSF
response at lower infectivity doses (0.1 : 1
and 1 : 1), whereas the highest dose
(10 : 1) was not stimulatory (Fig. 2). Fur-
thermore, regardless of the infectivity
ratio, neither C. glabrata strain induced
an IL-8 response in SCC15 cells (Fig. 3).
In additional experiments, OKF6/

TERT2 cells were infected by C. glabrata
GDH2269 or MRL2303 for 24 h, and the
cytokine responses of these cells were
studied. The OKF6/TERT2 cells respon-

ded to strain GDH2269 in a similar
manner to the SCC15 cells, by up-regula-
ting the production of IL-1a and GM-CSF
(Fig. 4B). However, strain MRL2302
showed a slightly different profile from
the other two C. glabrata strains because it
did not induce an IL-1a response
(Fig. 4C). In addition, up-regulated pro-
duction of growth-related oncogene was
observed in cells infected by this strain.
These results were confirmed by ELISA
(not shown).

We have previously reported that
the proinflammatory cytokine responses
of SCC15 and OKF6/TERT2 cells to
C. albicans closely resemble those of
primary cells (8, 9). However, there is, as
yet, no report on the cytokine responses of
primary oral keratinocytes to C. glabrata.
Therefore we compared the proinflamma-
tory cytokine responses of these cell lines
with primary gingival epithelial cells. As a
result of the limited life span of these
cultures in vitro, data from a single
experiment with multiple cell cultures are
shown in Table 1. Coculture of primary
gingival keratinocytes with C. glabrata did
not induce a strong IL-1a or IL-8 response
(more than two-fold over basal). However,
consistent with cell lines, primary gingival
keratinocytes showed a strong GM-CSF
response to infection with C. glabrata (at
least two-fold over basal) at the lowest
infectivity ratio (Table 1).

The C. glabrata-induced proinflammatory

cytokine profile in oral epithelial cells

differs from that of C. albicans

We and others have previously reported
that C. albicans triggered a strong IL-1a
and IL-8, but a weak, strain-dependent
GM-CSF response in oral epithelial cells
(7, 32). To compare the cytokine-inducing
potential of C. glabrata with that of
C. albicans, SCC15 cells were cocultured
with C. albicans strain SC5314 at an
infectivity ratio of 1 : 1 for up to 36 h. The
1 : 1 yeast to epithelial cell ratio was
previously documented as the optimal
infectivity ratio for C. albicans stimulation
of both IL-1a and IL-8 in oral keratino-
cytes (8, 9). Consistent with prior findings,
C. albicans SC5314 triggered a strong
IL-1a and IL-8 response, but a weak
GM-CSF response in SCC15 cells and
primary keratinocytes. When compared
with C. albicans, C. glabrata induced a
lower IL-1a and IL-8 response (Figs 1 and
3 and Table 1). Interestingly, the GM-CSF
response of SCC15 cells and primary
keratinocytes to both C. glabrata strains
was significantly higher than that to
C. albicans SC5314 after 36 h of infection
(Fig. 2 and Table 1).

C. glabrata was less cytotoxic to oral

epithelial cells compared to C. albicans

We next characterized the cell-damaging
potential of the two oral C. glabrata strains
in comparison to C. albicans strain
SC5314. The cytotoxicity of these organ-
isms was tested in monolayer cultures of
SCC15 and primary cells by measuring
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Fig. 1. Interleukin-1a (IL-1a) response of oral epithelial cell line SCC15 to Candida glabrata. Cells
were challenged with C. glabrata strains GDH2269 or 94-11 or Candida albicans SC5314 at fungal
cell to epithelial cell ratios of 0.1 : 1, 1 : 1 and 10 : 1. The presence of IL-1a was detected 36 h
postinfection by ELISA. Mean values were obtained by analysis of three individual experiments with
each condition set up in triplicate. The bars represent one SEM of the mean values. *P < 0.05 for a
comparison with uninfected cells.
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Fig. 2. Granulocyte–macrophage colony stimulating factor (GM-CSF) response of oral epithelial
cell line SCC15 to Candida glabrata. Cells were challenged with C. glabrata strains GDH2269 or
94-11 or Candida albicans SC5314 at fungal cell to epithelial cell ratios of 0.1 : 1, 1 : 1 and 10 : 1.
The presence of GM-CSF was detected 36 h postinfection by ELISA. Mean values were obtained by
analysis of three individual experiments with each condition set up in triplicate. The bars represent
one SEM of the mean values. *P < 0.05 for a comparison with uninfected cells.
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LDH released in culture supernatants dur-
ing infection. C. albicans strain SC5314
has been shown by our group and others to
be cytotoxic in several cell culture systems
(9, 12). Consistent with earlier findings,
C. albicans SC5314 demonstrated a high
level of cytotoxicity because the LDH
released in the presence of these organisms
was significantly higher (P < 0.05) than
the spontaneous release 24 h postinfection
(Table 2). Compared with C. albicans, the
cytotoxic potential of the two C. glabrata
strains 94-11 and GDH2269 was much
lower (P < 0.05). In fact, even after 24 h
of infection, the LDH released in the
presence of C. glabrata was not signifi-
cantly higher than that of the uninfected
control (P ¼ 0.16) (Table 2).
To verify that the cytotoxic potential of

C. glabrata was not limited to transformed

epithelial cell lines, we also compared the
cytotoxic effect of C. glabrata and C.
albicans using primary gingival epithelial
cell cultures from two different human
donors. As shown in Table 2, C. glabrata
strains 94-11 and GDH2269 exerted a
similar degree of cytotoxicity in primary
cells compared to SCC15 cells, which was
lower than that exerted by C. albicans
strains (Table 2).

Discussion

Candida species are the most common
opportunistic fungal pathogens in humans,
with C. albicans being the most prevalent
pathogen in mucosal and systemic fungal
infections (23, 36). Historically, C. glab-
rata has been considered a non-pathogenic
saprophyte of the normal flora in healthy

individuals (33). However, in the past two
decades, as a consequence of the wide-
spread use of immunosuppressive therapy
and broad-spectrum antimycotic prophy-
laxis, C. glabrata has emerged as an
important opportunistic oral pathogen,
ranking as the second or third most
frequently isolated Candida species from
oral candidiasis (11). Although the patho-
genicity of C. albicans in the oral mucosa
has been well established (4, 7), little is
known about the outcome of the interac-
tion between C. glabrata and oral mucosal
cells. So far there is only one other report
of the oral mucosal cytokine responses to
C. glabrata using a cell-line-based recon-
stituted human epithelial model of infec-
tion with a single strain of C. glabrata
(31).
A significant finding of our study is the

ability of C. glabrata to trigger GM-CSF
secretion in oral epithelial cells, which is
significantly higher than that of C. albi-
cans, regardless of the cell system studied.
GM-CSF may be an essential proinflam-
matory cytokine in the protection against
oral fungal infection and subsequent stro-
mal invasion because it may promote the
growth and local activation of innate
immune effector cells, such as neutrophils
and monocytes (5, 20). It has the ability to
augment the fungicidal activities of these
immunoeffector cells (2, 19). Clinically,
administration of this cytokine as an
adjunctive treatment of fluconazole-
refractory oropharyngeal candidasis in
patients with acquired immunodeficiency
syndrome led to a significant beneficial
effect on the oral mycoflora and helped
clear the infection (39).
Although an increased release of GM-

CSF by C. glabrata-infected oral epithelial
cells has been observed by us and others
(31), the mechanism and signaling path-
ways responsible for induction of this
crucial pro-inflammatory cytokine are un-
known. Toll-like receptors have been
demonstrated to be important for recogni-
tion of fungal pathogens and activation of
innate immune responses (16, 18). In vitro,
Candida phospholipomannan has been
proposed as the toll-like receptor 2 ligand,
which induces the release of anti-inflam-
matory cytokines by J774 mouse cells
(16). In contrast, binding of Candida
mannan to toll-like receptor 4 led to the
release of proinflammatory cytokines and
chemokines by human monocytes (34). In
human gingival epithelial cells, the expres-
sion of toll-like receptors 2 and 4 at the
mRNA level has been identified (38).
Interestingly, up-regulation of their expres-
sion in human gingival epithelial cells led
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to enhanced GM-CSF synthesis upon
stimulation of various bacterial compo-
nents (37). Therefore it is highly likely that
toll-like receptors 2 and/or 4 are involved
in the signaling pathway responsible for
GM-CSF up-regulation in C. glabrata-
infected oral epithelial cells.
Using oral epithelial cell lines provides

a number of benefits in the study of
pathogen–host interactions, which include
cost efficiency, practical simplicity and
better reproducibility as a result of the lack
of donor-to-donor variations. In this study
we showed that cell lines differ from
primary cells in their cytokine responses
to C. glabrata. A discrepancy in the proin-
flammatory cytokine responses between
primary cells and immortalized cell lines
to the same stimulus has been reported by
other groups (21, 22). For example, pri-
mary airway epithelial cells differ from
cell line A549 in the tumor necrosis factor-
a-induced IL-8 synthesis (22). In addition,
differences in cytokine induction among

different cell lines from the same tissue
origin have been reported (38). The dif-
ferent cytokine up-regulation capacity in
primary keratinocytes and cell lines may
reflect the different constitutive expression
levels of certain receptors on the cell
surface, such as CD14 (38) and toll-like
receptors (18).
Compared with C. albicans, C. glabrata

demonstrated significantly lower cytotox-
icity in our C. glabrata–oral epithelial cell
coculture system. The higher potential of
C. albicans to injure oral epithelial cells
may be the result of several virulence
factors, including protease production and
phospholipase secretion. Secreted aspartyl
proteases, the best-studied group of hydro-
lytic enzymes produced by C. albicans,
contribute to cell damage and tissue inva-
sion by damaging host cell membranes
(15). Similarly, expression of phospholi-
pase on the hyphal tips of C. albicans
allows this organism to enter the cyto-
plasm of host cells by digesting the cell

membrane (1). In contrast to C. albicans,
C. glabrata failed to produce significant
levels of protease activity in vitro (3).
Furthermore, the production of phospho-
lipases by C. glabrata was only detected in
a small fraction of clinical isolates, and at a
significantly lower level of production
compared to the co-isolated C. albicans
strains (17, 29). The lower level of
production of extracellular hydrolytic en-
zymes in C. glabrata may be responsible
for the low cytotoxicity of this organism.
Taken together, our findings showed

that C. albicans and C. glabrata have
significant differences in the proinflamma-
tory cytokine profiles triggered in oral
epithelial cells, with C. glabrata triggering
a more pronounced GM-CSF and C.
albicans triggering a more pronounced
IL-8 and IL-1a response. In addition,
compared with C. albicans, C. glabrata
had lower cytotoxic potential. The differ-
ent cytokine profile induced by C. glab-
rata and C. albicans suggests that distinct
strategies are utilized by human oral
epithelial cells to mediate mucosal inflam-
mation and protection from different spe-
cies. The low cell-damaging potential of
the two C. glabrata strains tested in this
study questions their potential for direct
participation in mucosal damage during
infection. Future studies using a larger
number of lesion-associated C. glabrata
strains are needed to clarify the role of this
organism in mucosal destruction.
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