#### © 2008 The Authors. Journal compilation © 2008 Blackwell Munksgaard

ORAL MICROBIOLOGY AND IMMUNOLOGY

# Effect of *Veillonella parvula* on the antimicrobial resistance and gene expression of *Streptococcus mutans* grown in a dual-species biofilm

Luppens SBI, Kara D, Bandounas L, Jonker MJ, Wittink FRA, Bruning O, Breit TM, ten Cate JM, Crielaard W. Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm. Oral Microbiol Immunol 2008: 23: 183–189. © 2008 The Authors. Journal compilation © 2008 Blackwell Munksgaard.

**Introduction:** Our previous studies showed that *Streptococcus mutans* and *Veillonella parvula* dual-species biofilms have a different acid production profile and a higher resistance to chlorhexidine than their single-species counterparts. The aim of the current study was to test whether the susceptibility of *S. mutans* grown in the presence of *V. parvula* is also decreased when it is exposed to various other antimicrobials. Furthermore, the aim was to identify other changes in the physiology of *S. mutans* when *V. parvula* was present using transcriptomics.

**Methods:** Susceptibility to antimicrobials was assessed in killing experiments. Transcript levels in *S. mutans* were measured with the help of *S. mutans* microarrays.

**Results:** When *V. parvula* was present, *S. mutans* showed an increase in survival after exposure to various antimicrobials. Furthermore, this co-existence altered the physiology of *S. mutans*. The expression of genes coding for proteins involved in amino acid synthesis, the signal recognition particle-translocation pathway, purine metabolism, intracellular polysaccharide synthesis, and protein synthesis all changed.

**Conclusion:** Growing in a biofilm together with a non-pathogenic bacterium like *V. parvula* changes the physiology of *S. mutans*, and gives this bacterium an advantage in surviving antimicrobial treatment. Thus, the study of pathogens implicated in polymicrobial diseases, such as caries and periodontitis, should be focused more on multispecies biofilms. In addition, the testing of susceptibility to currently used and new antimicrobials should be performed on a multispecies microbial community rather than with single pathogens.

S. B. I. Luppens\*, D. Kara\*, L. Bandounas<sup>1,3</sup>, M. J. Jonker<sup>2</sup>, F. R. A. Wittink<sup>2</sup>, O. Bruning<sup>2</sup>, T. M. Breit<sup>2</sup>, J. M. ten Cate<sup>1</sup>, W. Crielaard<sup>1,3</sup>

<sup>1</sup>Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, the Netherlands, <sup>2</sup>Microarray Department & Integrative Bioinformatics Unit, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands, <sup>3</sup>Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands

Key words: biofilm; resistance; species interaction

S. B. I. Luppens, Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Louwesweg 1, 1066 EA Amsterdam, the Netherlands Tel.: +31 20 5188437; fax: +31 20 5188437; fax: +31 20 6692881; e-mail: s.luppens@acta.nl Accepted for publication July 8, 2007

\*These two authors contributed equally to the paper.

*Streptococcus mutans* is considered one of the primary cariogenic pathogens present in dental plaque. It has been studied extensively as a monoculture grown in suspension. In recent years, the majority of the studies on *S. mutans* have focused on monoculture biofilms, because the natural habitat of *S. mutans*, dental plaque, is a biofilm. Dental plaque is a multispecies community from which hundreds of species have been isolated. Therefore, instead of studying monocultures, it would be more realistic to study the properties of *S. mutans* grown in the presence of other

bacteria, especially because other studies have shown that the presence of a second bacterium may influence the gene expression, virulence, and other properties of the other bacterium in the culture (10, 11, 29).

A method that is frequently used to obtain an overview of the changes in

physiology in bacteria after a certain stimulus is transcriptional profiling with the help of microarrays. Microarrays have been used to study the difference in gene expression between *S. mutans* grown in suspension and in biofilm (32), changes in gene expression in mutant strains (16, 24, 40), and for comparative genome hybridization of *S. mutans* strains (39).

Up to now, *S. mutans* microarrays have not been used to study physiological changes in response to the presence of another bacterium. Some reasons for this could be that it is difficult to grow two species with different nutrient requirements together, that the results of the dual-species analyses have to be compared with analyses of the two single species, which triples the number of samples, and that it needs to be verified that the sample of the one species does not bind to the microarray of the other species.

*Veillonella parvula* lives in the same complex multispecies plaque community as *S. mutans*. It cannot ferment glucose and most other sugars (9, 28), but it metabolizes lactic acid, a waste product of *S. mutans*, and converts it into weaker acids, such as acetic and propionic acid, which have a reduced ability to solubilize enamel (30). For this reason, it is considered a benevolent plaque organism.

Previously, we studied the effect of *V. parvula* on *S. mutans* grown in a dualspecies biofilm. The presence of *V. parvula* influenced the acid production profile of the *S. mutans* in the dual-species biofilm. Furthermore, both *V. parvula* and *S. mutans* grown in dual-species biofilm showed increased survival (18, 19) and were able to regrow faster than bacteria grown in single-species biofilms after exposure to the antimicrobial chlorhexidine (19). Therefore, we decided to study the interaction between these two plaque bacteria in more detail.

The first aim of the current study was to determine whether V. parvula and S. mutans grown together in dual-species biofilms are more resistant to antimicrobials with a mode of action related to that of chlorhexidine and antimicrobials with a mode of action completely different from that of chlorhexidine. For this purpose the survival of bacteria in the dual-species biofilm was compared with the survival of bacteria in single-species biofilms after exposure to five antimicrobials with different modes of action: (3, 8, 31): cetylpyrimidinium chloride (CPC), zinc chloride, erythromycin, hydrogen peroxide, and amine chloride, the chloride salt of Olaflur. The second aim was to use

transcriptional profiling with the help of microarrays to determine what other changes in the physiology of *S. mutans* occur in response to the presence of *V. parvula*.

# Materials and methods Bacterial strains and growth conditions

Forty-eight-hour single-species *S. mutans* UA159 biofilms, single-species *V. parvula* DSM 2008 (DSMZ) biofilms, and dual-species biofilms with both *S. mutans* and *V. parvula* were grown as described previously (19) on the bottom of 96-well polystyrene microtiter plates (19) (antimicrobial treatment) or on the bottom of polystyrene culture plates (23) (RNA isolation). Medium was refreshed after 24 h.

# Antimicrobial treatment

The following antimicrobials were used: amine chloride [bis(hydroxyethyl)-aminopropyl-N-hydroxyethyl-octadecylamine dihydrochloride; GABA International (Therwil, Switzerland); 0.014%], zinc chloride (0.1 mmol/l), CPC (VWR International [Fontenay Sous Bois, France]; 0.2 mmol/l), erythromycin (Sigma-Aldrich, St Louis, MO; 0.015 g/l) and hydroperoxide (Merck [Darmstadt, gen Germany]; 2.5%). Killing experiments were performed in triplicate as described previously ('neutralized killing') (19), with the following exceptions: biofilms were exposed to antimicrobial for 5 min instead of 10 min and after exposure to amine chloride, zinc chloride, and erythromycin cysteine peptone water (19) was used as a neutralizer. Percentage survival was calculated by dividing the viable counts of a treated sample by the average of the viable counts of the control samples. To test the hypothesis that the survival of S. mutans or V. parvula was not influenced when they co-existed with each other, we compared the survival percentage of a species grown in single-species biofilms to the same species' survival percentage in dualspecies biofilms. For this purpose a permutation test was used (35) ( $\alpha \leq 0.05$ ). We used this non-parametric test because normality could not be assumed.

## **RNA** isolation

Forty-eight-hour biofilms were harvested as follows: the medium was poured off the polystyrene plates, 15 ml fresh warmed (37°C) medium was added and the biofilm cells were removed from the surface by swabbing. The resulting suspension was centrifuged once (15 min, 3939 g, 37°C) and the liquid was removed. The pellets were resuspended in 1 ml RNAPro solution (FastRNA Pro Blue Kit, MP Biomedicals [Illkirch, France]), snap frozen in liquid nitrogen and stored at -80°C until further use. Total RNA was extracted by bead beating followed by the steps described in the protocol of the FastRNA kit, and a subsequent step using Trizol (Invitrogen [Breda, The Netherlands]) followed by a DNase treatment with RNase-Free DNase, Isolated total RNA was further purified using the RNeasy Mini kit (Qiagen, Hilden, Germany). Quantification of total RNA was performed in a NanoDrop ND-100 UV/VIS spectrometer (Nanodrop Technologies, Wilmington, DE). RNA quality was validated using the RNA 6000 NanoAssay on an Agilent 2100 BioAnalyzer (Agilent Technologies, Amstelween, The Netherlands) and by recording the ribosomal RNA ratios (28S: 18S) and the RNA Integrity Number (RIN). For each biofilm type, five biological replicates were used to isolate total RNA and to hybridize with microarrays.

# Microarrays, target preparation, and hybridization

Microarrays specific for S. mutans were obtained from the Pathogen Functional Resource Centre (TIGR). The libraries represent a total of 1948 oligonucleotides and 500 controls printed in fourfold. The oligonucleotide library was printed with a Lucidea Spotter (Amersham Pharmacia Biosciences, Uppsala, Sweden) on commercial Epoxy slides (Schott Nexterion, Jena, Germany) and processed according to the manufacturer's instructions. Total RNA samples were hybridized, according to a common reference design without dye swap, with a pool of test samples as common reference (containing equal amounts of dual-species RNA, S. mutans single-species RNA and V. parvula singlespecies RNA). In a common reference design the fluorescence intensity of the experimental sample is compared to that of the common reference on the same slide, which makes an accurate comparison between the slides possible. From the total RNA samples with RIN-value >7, 15 µg (single-species samples) or 30 µg (dualspecies samples and common reference sample) was labeled using a random primed procedure with SuperScript II Reverse Transcriptase (Invitrogen), dCTP Cy5 (experimental samples), and dCTP Cy3 (common reference) according to the manufacturer's instructions. A doubled

amount (30 µg) of RNA sample was used for the dual-species samples because we assumed that only half of the RNA from these samples would bind to the slide, because V. parvula RNA hardly hybridized to the S. mutans microarray slide (see below) and because we assumed that approximately half of each dual-species sample consisted of S. mutans mRNA. This last assumption was based on microscopic cell counts and was confirmed by the fact that there were no major differences in overall intensity levels between the slides hybridized with dual-species samples and S. mutans single-species samples. We normalized for the modest difference in overall intensity between dual-species slides and S. mutans singlespecies slides using lowess-normalization (see below). Labeled complementary DNA (cDNA) was assessed for the amount of incorporated label using a NanoDrop ND-100 UV/VIS spectrometer. The microarrays were hybridized overnight with 200 µl hybridization mixture, consisting of 50 µl Cy3- and Cy5-labeled cDNA, 100 µl formamide and 50 µl  $4 \times$  Micro-Array Hybridization Buffer (Amersham Pharmacia Biosciences) at 37°C, washed Slide in an Automated Processor (Amersham Pharmacia Biosciences), and subsequently scanned in an Agilent DNA MicroArray Scanner (Agilent Technologies).

#### Data analysis and statistics

Microarray spot intensities were quantified using FEATURE EXTRACTION software (version 8.5). Data were processed further using R [version 2.2.1 (27)] and BIOCON-DUCTOR (http://www.bioconductor.org/) MAANOVA package (version 0.98.8). All slides were subjected to quality control checks. Quality checks included visual inspection of the scans, examining the consistency among the replicated samples by principal components analysis, testing against criteria for signal to noise ratios, for consistent performance of the labeling dyes, consistent pen performance, and visual inspection of pre- and postnormalized data with box plots and Ratio-Intensity (RI) plots. The quality checks revealed that the RNA from V. parvula samples only resulted in background expression values caused by non-specific binding. Further analysis was therefore focused on the difference between samples from S. mutans biofilms and S. mutans + V. parvula biofilms. After log2 transformation, the data were normalized using a spatial lowess smoothing procedure and

statistically analyzed using a two-stage mixed analysis of variance (ANOVA) model (20, 43). First, array, dye and array-by-dye effects were modeled globally. Subsequently, the residuals from this first model were fed into the gene-specific model to fit biofilm and spot effects on a gene-by-gene basis using a mixed model ANOVA. These residuals are reported as expression values. To test the hypothesis that S. mutans genes were not influenced when S. mutans coexisted with V. parvula, a permutation based F1 test was applied, which allows the assumption that the transcript data are normally distributed to be relaxed (6). To account for multiple testing, P-values from the permutation procedure were adjusted to represent a false discovery rate (FDR) of 5% (2). An overview of pathways (and protein complexes) that contained one or more of the differentially expressed genes was constructed with the help of database mining and gene ontology. The pathway complexes were related to differences in gene expression through gene set enrichment analysis on the F1 statistics (25), using the gene-set-test facility in the bioconductor package LIMMA. Only the pathways that showed a significant change are mentioned in the Results section. Microarray data have been deposited in the ARRAYEXPRESS database (http:// www.ebi.ac.uk/aerep?) with experiment accession number E-MEXP-1034.

#### Results

S. mutans UA159 and V. parvula were grown separately in single-species biofilm and together in dual-species biofilms for 48 h. All biofilms contained  $3 \times 10^8$ to 10<sup>9</sup> colony-forming units/cm<sup>3</sup>. In a previous study with S. mutans C180-2, we exposed these three types of biofilms to chlorhexidine and found that the bacteria in the dual-species biofilms survived better than the bacteria in the single-species biofilm (19). Similar results were found for S. mutans UA159 exposed to chlorhexidine (data not shown). In the present study, the bacteria in the single-species biofilms and dualspecies biofilms were exposed to five other antimicrobials with different modes of action.

*V. parvula* survived erythromycin treatment better when *S. mutans* was present (Fig. 1). The results for survival of *V. parvula* after exposure to hydrogen peroxide are not reliable because the counts were below the detection limit, and are therefore not shown. The average percentage of *S. mutans* that survived



Fig. 1. Percentage survival of single- and dualspecies biofilm bacteria after exposure to 0.2 mmol/l CPC, 0.014% amine chloride, 0.1 mmol/l zinc chloride, 0.015 g/l erythromycin and 2.5% hydrogen peroxide. Sm single, Streptococcus mutans in single-species biofilm; Sm dual, S. mutans in dual-species biofilm; Vp single, Veillonella parvula in single-species biofilm; Vp dual, V. parvula in dual-species biofilm. 100% survival values (average  $\pm$  SD) are  $2.5 \pm 0.93 \times 10^{8}$ (Sm single),  $2.8 \pm$  $0.55 \times 10^8$  (Sm dual),  $3.9 \pm 2.2 \times 10^8$  (Vp single) and  $4.1 \pm 1.3 \times 10^8$  colony-forming units/well (Vp dual). \*Significant difference between single-species and dual-species biofilm viable counts of the same bacterium (P = 0.05). #Value below the detection limit (Vp single, 0.08%; Vp dual, 0.11%). Error bars represent the standard deviation.

antimicrobial treatment was higher in dual-species biofilm than in single-species biofilm (P = 0.05) for all five antimicrobials used. Thus, *S. mutans* growing in these dual-species biofilms was better able to survive exposure to the six antimicrobials than *S. mutans* growing in single-species biofilm.

These findings suggested that there are differences in physiology between S. mutans grown in single-species biofilm and S. mutans grown in dual-species biofilm together with V. parvula. To gain more insight into these differences we compared, with the help of S. mutans microarrays, the transcript levels in S. mutans grown alone directly with those of S. mutans grown with V. parvula. This direct comparison was possible because hybridization of the V. parvula samples to the S. mutans microarrays only resulted in background expression values caused by non-specific binding (Fig. 2). The distribution of the spot fluorescence intensities of S. mutans microarrays hybridized with a V. parvula sample was similar to that of spots on the microarrays that did not contain oligonucleotides (empty spots).

Analysis showed that in *S. mutans* the transcript levels of 15 genes were significantly (P < 0.05) higher in the presence of *V. parvula* than in the absence of *V. parvula* and 19 were lower (Tables 1 and 2). Of the 15 upregulated genes, seven



Fig. 2. Frequency plots of the intensities of the spots from an arbitrary microarray hybridized with a Streptococcus mutans sample (black thick line, right-hand y-axis), from an arbitrary microarray hybridized with S. mutans and Veillonella parvula dual-species sample (dashed-dotted line, right-hand y-axis), from empty control spots on the microarrays (dashed line, left-hand y-axis), and from an arbitrary microarray hybridized with V. parvula sample (black thin lines, left-hand v-axis). Empty spots are spots that deliberately do not contain oligonucleotides. The x-axis indicates the log<sub>2</sub> of the Cy5 fluorescence signal and the y-axes indicate the relative concentration of spots with the corresponding fluorescence intensity.

encoded ribosomal proteins and one encoded trigger factor (*ropA*, *SMU.91*), a ribosome-associated chaperone (17, 21). The transcript levels of an additional four genes encoding ribosomal proteins were higher in *S. mutans* grown in dual-species biofilm than in *S. mutans* grown in singlespecies biofilm at a lower significance level (P < 0.10). Gene-set enrichment analysis showed that one specific group of 23 genes encoding for ribosomal proteins was upregulated ( $P = 2 \times 10^{-5}$ , data not shown). Furthermore, almost all (47 out of 51) ribosomal protein gene transcript levels were higher in *S. mutans* grown in dual-species biofilm than in *S. mutans* grown in single-species biofilm (data not shown).

Another upregulated gene coded for PurN (SMU.35), which is involved in purine synthesis. Gene-set enrichment analvsis showed that the expression of the genes of the entire purine synthesis pathway (SMU.29, SMU.30, SMU.32, SMU.34, SMU.35, SMU.37, SMU.48, SMU.50, SMU.51, SMU.59, and SMU.268) in which L-glutamine and 5-phosphoribosyl 1-pyrophosphate are joined and converted to adenosine 5' monophosphate, increased (P = 0.035). SMU.33, a gene that encodes for a hypothetical protein and lies between two of the genes coding for enzymes of the purine synthesis pathway, was also significantly upregulated.

Two of the 19 downregulated genes are involved in amino acid metabolism: ThrC (*SMU.70*), which catalyzes the conversion of *O*-phospho-L-homoserine to L-threonine and GdhA (*SMU.913*), which converts L-glutamate to 2-oxoglutarate and ammonia. In addition, the transcript level of the gene encoding GlnA (*SMU.364*), the enzyme that converts L-glutamine to L-glutamate and ammonia, was down 10.3-fold (P = 0.31, data not shown).

In *S. mutans* that was grown in dualspecies biofilm, expression of the peptide chain release factor 3 gene (*pfrC*, *SMU.608*) was significantly decreased. PfrC is involved in translation, but is a dispensable factor (38).

Glycogen in S. mutans is called intracellular polysaccharide (IPS). In addition to glgC (SMU.1538), which showed a significant decrease in expression, other genes involved in IPS metabolism (36) were also downregulated: SMU.1535 (P = 0.126),*SMU.1536* (P = 0.092),SMU.1537 (P = 0.062), and SMU.1539(P = 0.104). Gene-set enrichment analysis showed that the expression of SMU.1535 to SMU.1539 together decreased significantly (P = 0.0091). SMU.1565, another significantly downregulated gene, codes for a putative 4-α-glucanotransferase (synonym of amylomaltase). In S. mutans it may be involved in the production of IPS from maltose (33, 44).

# Discussion

In a previous study we have shown that the susceptibility to chlorhexidine of *S. mutans* and *V. parvula* grown in biofilm decreases in each other's presence. The current study shows that this is also true when these biofilms are exposed to other antimicrobials. *V. parvula* was able to survive erythromycin treatment better in dual-species biofilm than in single-species biofilm. Survival after exposure to the hydrogen peroxide concentration that was used to kill *S. mutans* was too low to be detected, as would be expected for a bacterium with a very low oxygen tolerance. *S. mutans* was better able to survive

Table 1. Overview of gene transcripts upregulated dual-species biofilms<sup>1</sup>

| Locus <sup>2</sup>   | Definition <sup>3</sup>                                             | Gene name <sup>3</sup> | Fold change | P-value |
|----------------------|---------------------------------------------------------------------|------------------------|-------------|---------|
| Translation: riboson | nal proteins: synthesis and modification                            |                        |             |         |
| SMU.2017c            | 50S ribosomal protein L14                                           | rplN                   | 2.2         | 0.041   |
| SMU.2018c            | 30S ribosomal protein S17                                           | rpsQ                   | 2.0         | 0.033   |
| SMU.2019c            | 50s ribosomal protein L29                                           | rpmC                   | 1.9         | 0.045   |
| SMU.2023c            | 30S ribosomal protein S19                                           | rpsS                   | 2.8         | 0.034   |
| SMU.2024c            | 50S ribosomal protein L4                                            | rplD                   | 2.9         | 0.041   |
| SMU.2025c            | 50S ribosomal protein L3                                            | rplC                   | 2.9         | 0.041   |
| SMU.2026c            | 30S ribosomal protein S10                                           | rpsJ                   | 2.8         | 0.030   |
| Cellular processes:  | protein and peptide secretion                                       |                        |             |         |
| SMU.91               | Peptidyl-prolyl isomerase, trigger factor                           | ropA                   | 1.3         | 0.046   |
| Purines, pyrimidine  | s, nucleosides, and nucleotides: purine ribonucleotide biosynthesis | -                      |             |         |
| SMU.35               | Putative phosphoribosylglycinamide formyltransferase                | purN                   | 1.6         | 0.046   |
| Unassigned           |                                                                     | *                      |             |         |
| SMU.641              | Oxidoreductase                                                      | qor                    | 2.3         | 0.034   |
| SMU.679              | Oxidoreductase, aldo/keto reductase family                          | ycgG                   | 1.4         | 0.046   |
| Unknown              |                                                                     |                        |             |         |
| SMU.543              | Conserved hypothetical protein                                      | -                      | 1.4         | 0.027   |
| Hypothetical         |                                                                     |                        |             |         |
| SMU.33               | Hypothetical protein                                                | _                      | 1.7         | 0.048   |
| SMU.642              | Hypothetical protein                                                | _                      | 2.3         | 0.034   |

<sup>1</sup>Gene transcripts in *S. mutans* grown together with *V. parvula* were compared to gene transcripts of *S. mutans* grown in single-species biofilms (fold-change  $\geq 1.3$ , P < 0.05).

<sup>2</sup>GenBank locus tag.

<sup>3</sup>http://www.oralgen.lanl.gov/.

| Table 2  | Overview | of gono | transprints | downrogulated | dual anasias | biofilms <sup>1</sup> |
|----------|----------|---------|-------------|---------------|--------------|-----------------------|
| Table 2. | Overview | of gene | transcripts | downregulated | dual-species | bioinnis              |

| Locus <sup>2</sup>    | Definition <sup>3</sup>                                                | Gene name <sup>3</sup> | Fold change | P-value |
|-----------------------|------------------------------------------------------------------------|------------------------|-------------|---------|
| Amino acid biosynt    | hesis: aspartate family                                                |                        |             |         |
| SMU.70                | Threonine synthase                                                     | thrC                   | 6.1         | 0.017   |
| Amino acid biosynt    | hesis: glutamate family                                                |                        |             |         |
| SMU.913               | NADP-specific glutamate dehydrogenase                                  | gdhA                   | 4.0         | 0.042   |
| Protein synthesis: th | RNA aminoacylation                                                     |                        |             |         |
| SMU.158               | Cysteinyl-tRNA synthetase                                              | cysS                   | 4.2         | 0.030   |
| SMU.773c              | Lysyl-tRNA synthetase                                                  | lysS                   | 4.3         | 0.032   |
| SMU.1311c             | Asparaginyl-tRNA synthetase                                            | asnS                   | 3.7         | 0.035   |
| Protein synthesis: p  | rotein modification                                                    |                        |             |         |
| SMU.466               | Cysteine aminopeptidase C                                              | pepC                   | 6.7         | 0.029   |
| Protein synthesis: tr | anslation factors                                                      |                        |             |         |
| SMU.608               | Peptide chain release factor 3                                         | prfC                   | 2.0         | 0.034   |
| Protein fate: protein | and peptide secretion and trafficking                                  |                        |             |         |
| SMU.744               | Cell division protein; signal recognition particle                     | ftsY                   | 2.1         | 0.030   |
| Transport and bindi   | ng proteins: ABC superfamily: ATP-binding protein                      |                        |             |         |
| SMU.803c              | ABC transporter, ATP-binding protein                                   | ykhF                   | 2.1         | 0.041   |
| SMU.1120c             | Sugar ABC transporter, ATP-binding protein                             | psaA                   | 6.6         | 0.047   |
| Energy metabolism:    | sugars                                                                 | -                      |             |         |
| SMU.1538c             | Glucose-1-phosphate adenylyltransferase                                | glgC                   | 1.6         | 0.046   |
| SMU.1565c             | 4-α-glucanotransferase                                                 | malM                   | 7.1         | 0.013   |
| Energy metabolism:    | fermentation                                                           |                        |             |         |
| SMU.1021              | Citrate lyase alpha chain                                              | citF                   | 3.4         | 0.032   |
| Cellular processes:   | cell division                                                          |                        |             |         |
| SMU.1003              | Glucose-inhibited division protein                                     | gidA                   | 6.6         | 0.020   |
| Cellular processes:   | adaptations to atypical conditions                                     |                        |             |         |
| SMU.1060c             | Signal recognition particle                                            | ffh                    | 6.3         | 0.039   |
| Cellular processes:   | toxin production and resistance, transport and binding proteins; other |                        |             |         |
| SMU.71                | MATE efflux family protein                                             | -                      | 3.5         | 0.046   |
| Unassigned            |                                                                        |                        |             |         |
| SMU.1693c             | Uncharacterized hemolysin                                              | -                      | 4.1         | 0.046   |
| Unknown               |                                                                        |                        |             |         |
| SMU.575c              | Conserved hypothetical protein                                         | -                      | 5.3         | 0.045   |
| SMU.862               | Conserved hypothetical protein                                         | -                      | 2.4         | 0.034   |

<sup>1</sup>Gene transcripts in *S. mutans* grown together with *V. parvula* were compared to gene transcripts of *S. mutans* grown in single-species biofilms (fold-change  $\geq 1.3$ , P < 0.05).

<sup>2</sup>Genbank locus tag.

<sup>3</sup>http://www.oralgen.lanl.gov/.

antimicrobial exposure when grown in dual-species biofilm than in single-species biofilm. This was not only true after exposure to antimicrobials with a mode of action related to that of chlorhexidine (CPC and amine chloride), something that may have been expected, but was even true after exposure to antimicrobials with a completely different mode of action (hydrogen peroxide, erythromycin, and zinc chloride). An increased resistance to antimicrobials has also been found in other mixed-species biofilms compared to single-species biofilms (4, 12, 34).

Our results suggest that *V. parvula* changes the physiology of *S. mutans*. Recent studies on the behavior of multi-species communities have shown that the presence of one or more bacteria can change the virulence and gene expression in other pathogens. Animal experiments with pathogenic *Pseudomonas aeruginosa* and avirulent oropharyngeal flora showed that avirulent strains enhance lung damage by *P. aeruginosa* (10). Strains of *Veillo-nella* and *Lactobacillus* were shown to decrease the expression of *aggR*, which

codes for a global transcriptional regulator of enteroaggregative *Escherichia coli* virulence factors, whereas *Enterococcus faecalis* and *Clostridium innocua* were shown to increase the expression of this gene (29). A study on the interaction between *Streptococcus gordonii* and *Veillonella atypica* showed that *S. gordonii* increases its expression of the  $\alpha$ -amylase-encoding gene *amyB* in the presence of *V. atypica* (11).

In the current study, comparative analysis of transcript levels in *S. mutans* growing in dual-species biofilm and in singlespecies biofilm showed that the physiology of this bacterium is indeed changed by the presence of *V. parvula*. Quite some differences were found, even though these cells were in stationary phase which may make it more difficult to detect changes. According to our results the most important changes that occurred when *V. parvula* was present were those listed below.

1 The signal recognition particle-translocation pathway genes ftsY and ffh (14) were downregulated. FtsY and Ffh are needed for normal growth at low pH in S. mutans (14, 15). However, in our previous experiments we have shown that the overall pH of the bulk medium is constant for the three types of biofilms (19), because of the presence of a buffer. Apparently, fisY and ffh can also be controlled by regulators that are independent of pH fluctuations.

2 Changes occurred in the amino acid metabolism. We concluded this from the lower expression of enzymes involved in aspartate and glutamate/glutamine metabolism, and from the lower expression of pepC, which shows 85% identity with the thiol aminopeptidase pepC from Streptococcus thermophilus (5). Aminopeptidases are believed to contribute to the final degradation of short peptides. An explanation for the change in amino acid metabolism could be that the amino acid concentration of the outside medium was higher because V. parvula breaks down proteins extracellularly to amino acids. V. parvula has previously been shown to degrade various proteins extracellularly (42). S. mutans could take up these amino acids, perhaps even specifically glutamine

and aspartate, and therefore would need to synthesize fewer amino acids by itself. This may also explain why pepC is expressed less: there would be less need for breakdown of small peptides in the cell, because they would already have been broken down to amino acids extracellularly. Glutamine and glutamate are also important for other cellular processes, such as amine metabolism, cell wall synthesis, pyrimidine and purine synthesis, and oxidation and reduction. However, there was no indication that a change in these processes took place when V. parvula was present, because the transcript levels of the genes coding for the other enzymes involved in these pathways did not show a significant change or a change in ratio (data not shown). The only exception to this was the change in purine metabolism.

**3** Purine metabolism was upregulated, which would coincide nicely with the presumed higher concentration of glutamine in the cell, because this amino acid is necessary for the first step of purine synthesis.

4 IPS metabolism was downregulated. S. mutans is known to produce IPS from sugars such as glucose and sucrose, which can serve as metabolic substrates for acid production during periods of carbohydrate limitation (13, 37). The downregulation of this metabolism means that either less IPS was made in the dual-species biofilm in this stage of growth or less IPS was broken down. The latter probability seems the most plausible because in stationary phase there is probably a sugar shortage and so no synthesis of IPS. S. mutans growing in dual-species biofilm used less of the IPS, possibly because the cells needed less energy for synthesis of amino acids, and for transport of lactate out of the cell. V. parvula consumes the lactic acid that is produced by S. mutans, which results in a lower lactic acid concentration in the medium after 48 h for dual-species biofilms than for single-species biofilms (19).

**5** The most prominent change that took place in the dual-species biofilm was that expression of a large number of genes coding for ribosomal proteins, and ropA, a ribosome associated chaperone (17, 21), were upregulated. This indicates the presence of more ribosomes. Similarly, Len *et al.* (22) found that all detected ribosomal proteins were upregulated when planktonic *S. mutans* cells were grown under low pH stress. Studies on related gram-positive bacteria have shown similar changes in gene expression patterns in response to antimicrobial exposure. In *Streptococcus pneumoniae, Bacillus sub-*

tilis, and Enterococcus faecalis the relative transcript levels of the majority of the genes that code for ribosomal proteins increase in response to the presence of various antibiotics (1, 7, 26). The decrease in transcript levels of the genes coding for amino acyl tRNA synthetases that was found in the current study also occurred in E. faecalis exposed to erythromycin and in S. pneumoniae and B. subtilis growing in the presence of various antibiotics (1, 7, 26). Also in accordance with our results is the increase in relative transcript amounts of the genes involved in purine metabolism in S. pneumoniae exposed to four antibiotics (26). Apparently, S. mutans responds to the presence of V. parvula in a manner similar to the response of other gram-positive bacteria to antibiotics.

We speculate that with a higher number of ribosomes present, cells exposed to antimicrobials may be better able to synthesize new proteins, a mechanism that is necessary for repair of the damage caused by the antimicrobials. A finding that could support this theory is the involvement of ropA in the resistance of S. mutans to hydrogen peroxide (41). However, whether the statistically significant 1.3fold upregulation of ropA also makes a physiologically significant difference is not clear. The proposed theory to explain the increased survival rate of S. mutans after antimicrobial exposure in the presence of V. parvula needs to be tested in future studies.

In conclusion, growing in a biofilm together with a non-pathogenic bacterium like V. parvula changes the physiology of S. mutans. The expression of genes coding for proteins involved in amino acid metabolism, IPS metabolism, the signal recogparticle-translocation pathway, nition purine metabolism, and protein synthesis changed. Furthermore, the presence of V. parvula gives the cariogenic S. mutans an advantage in surviving antimicrobial treatments. These findings show that in dental plaque the presence of V. parvula cannot solely be considered as an advantage. Besides its beneficial property of lactate consumption and conversion to less cariogenic acids, V. parvula could have an adverse effect. It can increase the survival of S. mutans after exposure to antimicrobials that are intended to reduce S. mutans numbers in dental plaque.

This study shows that the presence of another bacterium can change the phenotype of a pathogen and can increase its resistance to antimicrobials. Thus, the study of pathogens implicated in polymicrobial diseases, such as caries and periodontitis, should be focused more on multispecies biofilms, and the testing of the susceptibility to the currently used and new antimicrobials should be performed on a multispecies microbial community rather than with single pathogens.

### Acknowledgments

Microarrays were obtained through the National Institute of Allergy and Infectious Diseases (NIAID) Pathogen Functional Genomics Resource Center, managed and funded by the Division of Microbiology and Infectious Diseases, NIAID, National Institutes of Health, Department of Health and Human Services and operated by The Institute for Genomic Research (TIGR). We thank Dr R.E. Marquis, Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY for the gift of S. mutans UA159 and Dr Huub Hoefsloot, Swammerdam Institute for Life Sciences, for advice on statistical analysis.

#### References

- Aakra A, Vebo H, Snipen L et al. Transcriptional response of *Enterococcus faecalis* V583 to erythromycin. Antimicrob Agents Chemother 2005: 49: 2246–2259.
- Benjamini Y, Hochberg Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc B 1995: 57: 289–300.
- Block SS. Disinfection, sterilization, and preservation, 5th edn. Philadelphia: Lippincott Williams and Wilkins, 2001.
- Burmolle M, Webb JS, Rao D, Hansen LH, Sorensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 2006: **72**: 3916–3923.
- Chapot-Chartier MP, Rul F, Nardi M, Gripon JC. Gene cloning and characterization of PepC, a cysteine aminopeptidase from *Streptococcus thermophilus*, with sequence similarity to the eukaryotic bleomycin hydrolase. Eur J Biochem 1994: 224: 497–506.
- Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 2003: 4: 210.
- Dandliker PJ, Pratt SD, Nilius AM et al. Novel antibacterial class. Antimicrob Agents Chemother 2003: 47: 3831–3839.
- Decker EM, Weiger R, Wiech I, Heide PE, Breex M. Comparison of antiadhesive and antibacterial effects of antiseptics on *Streptococcus sanguinis*. Eur J Oral Sci 2003: 111: 144–148.
- Distler W, Kroncke A. The lactate metabolism of the oral bacterium *Veillonella* from human saliva. Arch Oral Biol 1981: 26: 657–661.

- Duan K, Dammel C, Stein J, Rabin H, Surette MG. Modulation of *Pseudomonas aeruginosa* gene expression by host microflora through interspecies communication. Mol Microbiol 2003: **50**: 1477–1491.
- Egland PG, Palmer RJ Jr., Kolenbrander PE. Interspecies communication in *Streptococcus gordonii–Veillonella atypica* biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci USA 2004; **101**: 16917–16922.
- Elvers KT, Leeming K, Lappin-Scott HM. Binary and mixed population biofilms: time-lapse image analysis and disinfection with biocides. J Ind Microbiol Biotechnol 2002: 29: 331–338.
- Freedman ML, Coykendall AL. Variation in internal polysaccharide synthesis among *Streptococcus mutans* strains. Infect Immun 1975: 12: 475–479.
- 14. Gutierrez JA, Crowley PJ, Cvitkovitch DG et al. *Streptococcus mutans* ffh, a gene encoding a homologue of the 54 kDa subunit of the signal recognition particle, is involved in resistance to acid stress. Microbiology 1999: **145**: 357–366.
- Hasona A, Crowley PJ, Levesque CM et al. Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc Natl Acad Sci USA 2005: 102: 17466–17471.
- Hasona A, Zuobi-Hasona K, Crowley PJ et al. Membrane composition changes and physiological adaptation by *Streptococcus mutans* signal recognition particle pathway mutants. J Bacteriol 2007: 189: 1219–1230.
- Hesterkamp T, Hauser S, Lutcke H, Bukau B. *Escherichia coli* trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sci USA 1996: 93: 4437–4441.
- Kara D, Luppens SB, van Marle J, Ozok R, Ten Cate JM. Microstructural differences between single-species and dual-species biofilms of *Streptococcus mutans* and *Veillonella parvula*, before and after exposure to chlorhexidine. FEMS Microbiol Lett 2007: 271: 90–97.
- Kara D, Luppens SBI, Cate JM. Differences between single- and dual-species biofilms of *Streptococcus mutans* and *Veillonella parvula* in growth, acidogenicity and susceptibility to chlorhexidine. Eur J Oral Sci 2006: **114**: 58–63.
- Kerr MK, Martin M, Churchill GA. Analysis of variance for gene expression microarray data. J Comput Biol 2000: 7: 819–837.

- 21. Kramer G, Rauch T, Rist W et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 2002: **419**: 171–174.
- Len AC, Harty DW, Jacques NA. Stressresponsive proteins are upregulated in *Streptococcus mutans* during acid tolerance. Microbiology 2004: 150: 1339–1351.
- Luppens SBI, ten Cate JM. Effect of biofilm model, mode of growth, and strain on *Streptococcus mutans* protein expression as determined by two-dimensional difference gel electrophoresis. J Proteome Res 2005: 4: 232–237.
- Merritt J, Kreth J, Shi W, Qi F. LuxS controls bacteriocin production in *Streptococcus mutans* through a novel regulatory component. Mol Microbiol 2005: 57: 960– 969.
- Mootha VK, Lindgren CM, Eriksson KF et al. PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003: 34: 267–273.
- 26. Ng WL, Kazmierczak KM, Robertson GT, Gilmour R, Winkler ME. Transcriptional regulation and signature patterns revealed by microarray analyses of *Streptococcus pneumoniae* R6 challenged with sublethal concentrations of translation inhibitors. J Bacteriol 2003: **185**: 359–370.
- R Development Core Team. Posting date: December 18, 2006, R: a language and environment for statistical computing. http://www.R-project.org. R Foundation for Statistical Computing..
- Rogosa M. Family I. Veillonellaceae Rogosa 1971,232. In: Holt JG, Krieg NR, Bergey DH et al., eds. Bergey's manual of systematic bacteriology. Baltimore, MD: Williams, 1986: 680–683.
- Ruiz-Perez F, Sheikh J, Davis S, Boedeker EC, Nataro JP. Use of a continuous-flow anaerobic culture to characterize enteric virulence gene expression. Infect Immun 2004: 72: 3793–3802.
- Samaranayake LP. Essential microbiology for dentistry, 2nd edn. Edinburgh: Churchill Livingstone, 2002.
- Schlunzen F, Zarivach R, Harms J et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 2001: 413: 814–821.
- Shemesh M, Tam A, Steinberg D. Differential gene expression profiling of *Streptococcus mutans* cultured under biofilm and planktonic conditions. Microbiology 2007: 153: 1307–1317.

- Simpson CL, Russell RR. Intracellular alpha-amylase of *Streptococcus mutans*. J Bacteriol 1998: 180: 4711–4717.
- 34. Skilman LC, Sutherland IW, Jones MV. Cooperative biofilm formation between two species of enterobacteriaceae. In: Wimpenny J, Handley PS, Gilbert P, Lappin Scott H, Jones MV, ed. Biofilms community interactions and control. Chippenham: Bioline, 1997: 119–127.
- Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in biological research, 3rd edn. San Francisco: W.H. Freeman and company, 1995.
- Spatafora G, Rohrer K, Barnard D, Michalek S. A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo. Infect Immun 1995: 63: 2556– 2563.
- 37. Spatafora GA, Sheets M, June R et al. Regulated expression of the *Streptococcus mutans* dlt genes correlates with intracellular polysaccharide accumulation. J Bacteriol 1999: 181: 2363–2372.
- Tate WP, Poole ES, Mannering SA. Protein synthesis termination, Encyclopaedia of life sciences. Chichester: John Wiley & Sons, 2001.
- Waterhouse JC, Swan DC, Russell RR. Comparative genome hybridization of *Streptococcus mutans* strains. Oral Microbiol Immunol 2007: 22: 103–110.
- Wen ZT, Baker HV, Burne RA. Influence of BrpA on critical virulence attributes of *Streptococcus mutans*. J Bacteriol 2006: 188: 2983–2992.
- Wen ZT, Suntharaligham P, Cvitkovitch DG, Burne RA. Trigger factor in *Streptococcus mutans* is involved in stress tolerance, competence development, and biofilm formation. Infect Immun 2005: 73: 219–225.
- Wikstrom MB. Detection of microbial proteolytic activity by a cultivation plate assay in which different proteins adsorbed to a hydrophobic surface are used as substrates. Appl Environ Microbiol 1983: 45: 393– 400.
- Wolfinger RD, Gibson G, Wolfinger ED et al. Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 2001: 8: 625–637.
- 44. Wursch P, Koellreutter B. Maltotriitol inhibition of maltose metabolism in *Streptococcus mutans* via maltose transport, amylomaltase and phospho-alpha-glucosidase activities. Caries Res 1985: **19**: 439–449.

This document is a scanned copy of a printed document. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material.