
A number of studies have generally sug-
gested that osteopenia plays a role in the
progression of periodontal diseases (28,
29, 32, 33). However, several cross-
sectional studies showed no significant

correlation between the clinical parameters
of periodontitis and the systemic bone
mass; nor was a significant relation
observed between the bone mass measure-
ments and alveolar bone height (7, 39).

Further study of interactions between
osteoporosis and periodontal disease is
needed. Periodontitis and osteopenia may
share common risk factors, including
smoking, nutritional deficiencies, age,
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Background/aims: In the present study, we attempted to develop a simulated model to
explore the causal effects of periodontal pathogens on skeletal homeostasis in
postmenopausal osteoporosis.
Methods: Fifty-three female adult ICR mice were randomly assigned to an experimental
group (ovariectomized) or a control group. A single injection of Porphyromonas
gingivalis lipopolysaccharide (P. gingivalis-LPS, ATCC 33277) or Escherichia coli
lipopolysaccharide (E. coli-LPS) was administered intraperitoneally 4 weeks after an
ovariectomy. Concentrations of interleukin-6 (IL-6), osteoprotegerin (OPG), and the
receptor activator of nuclear factor-jB ligand (RANKL) in serum were subsequently
analyzed using an enzyme-linked immunosorbent assay (ELISA).
Results: Under stimulation with P. gingivalis-LPS or E. coli-LPS, the concentration of
OPG rose in both groups. The serum level of RANKL showed a decreasing trend 24 h
after the injection in both groups. After injection of P. gingivalis-LPS in both the
experimental and control animals, the OPG : RANKL ratio increased 24 h after the
booster (22.26–620.99, P < 0.05). The serum level of IL-6 in the experimental group
significantly increased 1–6 h after administration of E. coli-LPS and 1–3 h after
administration of P. gingivalis-LPS (P < 0.05).
Conclusions: A single booster injection of P. gingivalis-LPS induced short-term changes
in OPG, RANKL, and IL-6 serum levels in this ovariectomized mouse model.
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and corticosteroid use leading to immune
dysfunction, which may either directly
influence or modulate both disease
processes (34, 35).
Recent findings have suggested that

osteoclastogenesis is directly regulated
by the receptor activator of the nuclear
factor-jB ligand (RANKL) and its decoy
receptor, osteoprotegerin (OPG) (1, 15,
19). In one study, we attempted to deter-
mine the profiles of OPG, RANKL, inter-
leukin-6 (IL-6), and oncostatin M in
human gingival crevicular fluid, and tried
to establish an initial model of regulation
of the OPG and RANKL system by IL-6
family cytokines during the progression of
periodontal inflammation. Our data sug-
gested that from evidence of the positive
correlations between gingival crevicular
fluid RANKL and IL-6/oncostatin M,
crosstalk between members of the tumor
necrosis factor (TNF) family and glyco-
protein 130 (gp130) family (IL-6 and
OSM) might play a certain role in the
progression of periodontal disease (24).
Several lines of inquiry have indicated that
altered homeostasis in the OPG/RANKL/
RANK signaling pathway may contribute
to osteoporosis resulting from a meno-
pause-induced estrogen deficiency (12, 26,
41). Not only RANKL, but also TNF-a in
the TNF-ligand family was found to play a
crucial role in regulating osteoclast differ-
entiation and activity (40).
The incidences of bacteremia following

dental procedures such as tooth extraction,
endodontic treatment, periodontal surgery,
and ultrasonic scaling have been well
documented (2, 5, 6, 23), including in
100% of patients after dental extractions,
in 70% after dental scaling, in 55% after
third-molar surgery, and in 20% after
endodontic treatment (10). The incidences
of bacteremia in individuals with peri-
odontitis, gingivitis, and clinically healthy
periodontium after chewing, tooth brush-
ing, and scaling were investigated, and
Porphyromonas gingivalis was isolated
from the blood of more than one-third of
the patients with periodontitis, suggesting
that those patients might suffer from
bacteremia (8). In addition, there is evi-
dence that dental procedures may cause
bacteremia in adults and that components
of the causative bacteria of oral infections,
particularly lipopolysaccharide (LPS), may
promote atherosclerosis, and affect blood
coagulation and the function of platelets
(30). P. gingivalis-LPS enhances the pro-
duction of inflammatory cytokines such as
IL-1, IL-6, IL-8, and TNF-a in gingival
fibroblasts and induces periodontal bone
resorption (31). It is conceivable that

P. gingivalis-LPS may also enter the blood
circulation during ultrasonic scaling and
play a certain role in causing transient
bacteremia.
Accordingly, we assumed that P. gingi-

valis-LPS might penetrate the periodon-
tium after scaling and affect the bone
homeostasis of osteoporotic individuals.
The purpose of the present study was to set
up a reliable in vivo model for investigat-
ing a transient attack of P. gingivalis-LPS
on modulation of the serum OPG/RANKL
system and IL-6 in an ovariectomized
mouse model.

Materials and methods

Animal design for the ovariectomy

Fifty-three female adult ICR mice (Animal
Center, National Taiwan University Hos-
pital, Taipei, Taiwan) were maintained for
10 weeks at the Animal Center of Taipei
Medical University. Mice were randomly
assigned to a treatment group (E group,
n = 27) for an ovariectomy or to a control
group (C group, n = 26) for a sham oper-
ation. The study protocol was approved by
the Institutional Animal Care and Use
Committee of Taipei Medical University.
On day 0 of the study, a serum sample was
taken from the intraorbital cavity, consisting
of 0.4 ml whole blood, which was injected
into 2-ml Eppendorf tubes. The sample was
allowed to remain at room temperature for
2 h and then centrifuged at 15,000 g for
10 min to collect the serum. The concen-
trations of IL-6, OPG, and RANKL in the
serum were determined using commercial
enzyme-linked immunosorbent assay
(ELISA) kits (Quantikine; R&D System,
Minneapolis, MN, and Biomedica Medi-
zinprodukte, Wien, Austria, respectively)
to quantify the protein level and to
establish pre-surgical data. The ICR mice
were then anesthetized with ether to
allow exposure of the ovaries by a dorsal
approach; the gonads were removed in
the experimental group but only manip-
ulated without removing the organs in
the sham-operated cohort.

Efficacy of the ELISA bioassay

A bilateral ovariectomy in mice was
conducted 4 weeks before the second
round of serum samples was taken. For
ELISA, 50 ll assay diluent was added to
each well of a 96-well plate before the
standard or sample serum was pipetted
into the wells. After the solution was
washed out, the cytokine polyclonal anti-
rat IL-6 OPG/RANKL conjugate (100 ll)
was coated on each well and shaken for

2 h. Then, 100 ll substrate solution
(including 50 ll hydrogen peroxidase
and 50 ll chromogen) was added, and
the mixture was protected from light for
30 min. Stop solution (100 ll) was
added to stop the reaction. A spectro-
photometer was used to determine the
optical density with the wavelength set at
450 nm. The detection limit for ELISA
was 0.2 ng/ml (the mean minimum
detectable dose of IL-6 was 1.6 pg/ml,
that of OPG was 4.5 pg/ml, and that of
RANKL was <5 pg/ml).

LPS preparation

LPS derived from a P. gingivalis strain
(ATCC33277, P. gingivalis-LPS) was ex-
tracted following the method of Westphal
et al. (38). Before use, the LPS was diluted
in pyrogen-free distilled water (1 mg/ml).
The LPS endotoxin level was examined
using Limulus amebocyte lysate (Biowhi-
takker; BMA, Vallensbaek Strand, Den-
mark). LPS from Escherichia coli 0127:B8
(E. coli-LPS; Sigma, St Louis, MO) was
used as the control.

Acute injection of P. gingivalis-LPS

Four weeks after the ovariectomy opera-
tion, 100 lg P. gingivalis-LPS and 100 lg
E. coli-LPS (Sigma) were independently
injected into the peritoneum of assigned
animals in both the E and C groups. Serum
was collected 1, 3, 6, 24, and 48 h after the
injection. Serum concentrations of IL-6,
OPG, and RANKL were quantified using a
sandwich ELISA.

Biostatistics

SPSS version 10.0 software (SPSS, Inc.,
Chicago, IL) was used to carry out statis-
tical analyses of the variances of IL-6,
OPG, and RANKL concentrations in the
serum, and the OPG : RANKL ratio.
Since the initial data above were not
drawn from a normally distributed popu-
lation, as estimated by the Shapiro–Wilk
test, it was decided to analyze them using
the non-parametric Mann–Whitney U-test,
and the P-value was set at 0.05. The
Kruskal–Wallis test was used to verify
differences between baseline data and
those data derived after an acute injection
of either P. gingivalis-LPS or E. coli-LPS.
Spearman rank correlation coefficients
were used to examine changes in IL-6
and correlations with OPG, RANKL, and
the OPG : RANKL ratio. A statistical
correlation was considered significant
when the P-value was < 0.05.
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Results

Effects of an ovariectomy on IL-6, OPG,

RANKL, and the OPG : RANKL ratio

After ovariectomy, no difference was
found between the changes in IL-6
concentrations in the sera of ovariecto-
mized mice and in sham-operated mice
4 weeks after gonad dissection (Fig. 1A,
P = 0.739). As shown in Fig. 1B, the
expression of OPG in the serum of the

experimental group ranged from 1410.19
to 2830.96 pg/ml. However, the mean data
were significantly lower than those of the
control group (2080.14–3648.62 pg/ml)
(P < 0.001). On the other hand, the con-
centration of RANKL in the experimental
group ranged from 47.01 to 258.53 pg/ml
(Fig. 1C), which was higher than that in
the control group (6.69–149.79 pg/ml)
(P < 0.001). The OPG : RANKL ratio of
the control group (13.90–493.97) was

larger than that of the experimental group
(7.77–50.32) at 4 weeks after the ovariec-
tomy (Fig. 1D, P < 0.001).

Effects of bacterial LPSs on IL-6, OPG,

RANKL, and the OPG : RANKL ratio

Under stimulation with P. gingivalis-LPS
or E. coli-LPS, the concentrations of
OPG rose in both groups with a higher
amplitude of increase in the E. coli-
LPS-stimulated group than in the P.
gingivalis-LPS-stimulated group (Fig. 2A).
Compared to the baseline data, the level
of RANKL in the serum showed a decreas-
ing trend 24 h after the injection of P.
gingivalis-LPS in the ovariectomized
group (from 144.16 to 36.43 pg/ml,
P < 0.05) and the control group (from
79.12 to 33.06 pg/ml, P < 0.05) (Fig. 2B).
Twenty-four hours after injection of P.
gingivalis-LPS in the experimental group,
the OPG : RANKL ratio increased (from
22.26 to 620.99, P < 0.05) (Fig. 3A). The
expression of IL-6 sharply increased at 1–
6 h in the E. coli-LPS group and at 1–3 h in
the P. gingivalis-LPS group compared with
baseline data (P < 0.05) (Fig. 3B). In
addition, changes in OPG, RANKL, the
OPG : RANKL ratio, and IL-6 in the
experimental group did not significantly
differ from those in the control group with
injection of either E. coli-LPS or P. gingi-
valis-LPS.

Correlations of IL-6 with OPG, RANKL,

and the OPG : RANKL ratio

The data analyzed with Spearman rank
correlation coefficients showed that
regardless of which bacterial LPS was
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Fig. 1. (A) There was no difference in serum IL-6 concentrations between the experimental and
sham-operated groups. (B) Effect of an ovariectomy on OPG production in the serum of the
simulation model. (C) Effects of ovariectomy on the expression of RANKL in serum. (D) Ratio of
OPG : RANKL showing a significant difference between the experimental and control groups
4 weeks after ovariectomy.
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Fig. 2. (A) Changes in osteoprotegerin (OPG) of the experimental (E) (n = 45) and control (C) (n = 45) groups individually injected with
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used, there were no significant correlations
in changes of IL-6 with OPG, RANKL, or
the OPG : RANKL ratio after the LPS
injections (P = 0.266 to P = 0.971), ex-
cept for OPG and IL-6 in the control group
(P < 0.01).

Discussion

The present in vivo study indicated that
the OPG level in serum significantly
increased with the administration of
P. gingivalis-LPS or E. coli-LPS. In an
investigation of the effect of P. gingivalis
on OPG and RANKL production in
human microvascular endothelial cells,
results showed that P. gingivalis upregu-
lated the expression of OPG but not
RANKL messenger RNA (20). It was
also shown that cultured human peri-
odontal ligament cells stimulated with
LPS inhibited osteoclastogenesis by more
effectively producing OPG than RANKL
via the induction of IL-1b and TNF-a
(36). The increase in OPG seems to
represent a defensive mechanism for
binding to LPS-induced RANKL and
inhibiting subsequent events, like osteo-
clastogenesis, in bone homeostasis.
The present baseline data after the

ovariectomy and injection with the two
types of bacterial LPS showed that IL-6
was not correlated with OPG and
RANKL in bone homeostasis. Another
study found that proinflammatory cyto-
kines, but not IL-6, may stimulate osteo-
clastogenesis by inducing the expression
of RANKL in human osteoblast cells
(13). In contrast, IL-6 is directly capable
of inducing the formation of multinucle-

ated cells, the vitronectin receptor, and
calcitonin receptor by a RANKL-indepen-
dent mechanism (21). It can be postulated
that the gp130 family and the reciproca-
tion of OPG and RANKL are two
independent modulatory systems for
regulating osteoclastogenesis.
Most studies that analyzed the relation-

ship between oral infections and systemic
diseases implicated periodontal disease as
a risk factor for systemic diseases (22).
Subgingival biofilms constitute an enor-
mous and continually present bacterial
load. They represent continually renewing
reservoirs of gram-negative bacteria and
LPS with ready access to periodontal
tissues and the circulation. In a novel
in vivo murine calvarial model to assess
the effects of oral pathogens on the
expression of bone resorptive cytokines
in host tissues, it was suggested that oral
microorganisms with access to host tissues
elicited a battery of proinflammatory cyto-
kines (IL-1b, IL-6, and TNF-a) (18). The
study of patients with chronic periodontitis
undergoing an episode of subgingival
scaling or brushing also showed a signi-
ficant elevation in circulating proinflam-
matory cytokines and IL-6 and the
occurrence of transient bacteremia (8,
16). Similarly, our model showed that
short-term challenge with gram-negative
bacterial LPS induced transient changes in
IL-6, OPG, and RANKL in the serum.
However, these biomarkers have pleio-
tropic functions and can be expressed in
numerous tissues; it is difficult to forecast
their long-term effects on bone homeo-
stasis, using this rat model of postmeno-
pausal osteoporosis.

In general, the endotoxic activity of
P. gingivalis-LPS is very low compared
with that of the LPS isolated from entero-
bacteria (27). The LPS of P. gingivalis
differs from that of other gram-negative
bacteria in that its protein structure lacks a
4-O-phosphoryl group in the lipid A
backbone. This may be the cause of the
low toxicity of P. gingivalis-LPS (14, 25,
37). It has been shown that the production
of cytokines induced by P. gingivalis-LPS
was negligible when compared with that
induced by E. coli-LPS (3, 11). It is
conceivable that in this study the potency
of E. coli-LPS was stronger than that of
P. gingivalis-LPS in elevating serum levels
of the OPG : RANKL ratio and IL-6 and
would be a reasonable choice for the
positive control LPS in this study.
It is well known that bacteria from the

oral cavity may give rise to septicemia, but
whether the magnitudes of bacteremia
detected in serum are sufficient to elicit
septicemia remains unknown (16). The
clinically relevant dose of P. gingivalis-
LPS is also unknown and probably varies
greatly (4, 9, 16). It was verified by Isogai
et al. (17) that a 100-lg injection of
P. gingivalis-LPS was detected in macro-
phages and induced apoptosis of cells of
the spleen and lymph organs in 176 C3H/
HeN mice. Apoptosis reached its maxi-
mum between 1 and 2 days after an acute
injection. A similar peak was detected in
mice injected with E. coli-LPS. This
implies that the use of 100 lg of
P. gingivalis-LPS (1 lg/1 ll) was reason-
able in the present study for the short-term
evaluation of bacteremia in bone homeo-
stasis.
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It can be concluded that a single booster
of P. gingivalis-LPS may induce short-
term changes in OPG, RANKL, and IL-6
in the serum in this mouse model. Tran-
sient bacteremia caused by treatment of
periodontal disease or tooth brushing may
possibly affect fluctuations of both the
OPG and RANKL system and IL-6 in the
serum of patients with osteoporosis on a
short-term basis. Determining the long-
term effects of P. gingivalis-LPS requires
further investigation.
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