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Abstract
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Mesenchymal stem cells (MSC) have been identified in a

variety of adult tissues as a population of pluripotential self-

renewing cells. Based on their adherence and colony forming

properties, a small number of MSC can be isolated from most

mesenchymal tissues as well as bone marrow. In the presence

of one or more growth factors, these cells commit to lineages

that lead to the formation of bone, cartilage, muscle, tendon

and adipose tissue; recent studies indicate that stem cells for

cementum, dentine and the periodontal ligament also exist. All

of these cells can be expanded in vitro, and, embedded in a

scaffold, inserted into defects to promote healing and tissue

replacement. Increased understanding of the molecular

mechanism directing lineage specification and morphogenesis

is providing a rational approach for the regeneration of cra-

niofacial tissues and oral structures.
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Introduction

Enforcement of laws that forbid embryonic stem cell

research has energized studies of the use of adult cells to

regenerate and reconstruct the craniofacial apparatus.

In most cases, this is achieved by transplanting to the

diseased site a complex of bioactive molecules, a sup-

portive scaffold and a progenitor cell population (1,2).

Ongoing investigations suggest that the progenitor cells

are present in mature skeletal and dental tissues. This

population of self-renewing stem cells, termed mesen-

chymal stem cells (MSC), is capable of driving postnatal

growth, and orchestrating repair and regeneration.
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Surprisingly, unequivocal evidence supporting the

existence of stem cells in vivo has yet to be demon-

strated. However, many studies, especially those that

relate to the necessity of stromal cells maintaining

hematopoiesis, indicate that MSC exist, and serve a

functional role in the adult organism (3). Indeed, all

cell-based therapeutic strategies are based on the

assumption that in a specific tissue, in response to

molecular cues, a small population of self-renewing

MSC can reconstitute the parent tissue.

A major focus of contemporary studies in develop-

mental biology has been to delineate the biological

cues that drive stem cell proliferation and differenti-

ation (4). Four signaling protein families that govern

patterning and morphogenesis have been identified:

fibroblast growth factors, hedgehog proteins, bone

morphogenetic proteins, and wingless- and int-related

proteins (Wnts) (5). Proteins from each of these

families are now being evaluated for their utility for

stem cell based engineering of craniofacial defects

(6,7). Recently, these applications have been extended

to address the ravages of endodontic and periodontal

disease, as well as serving as adjunct therapy for oral-

maxillofacial and alveolar ridge surgery and augmen-

tation and repair of lesions of the temporomandibular

joint. Details of the identification and use of stem cells

for periodontal and orthognathic surgery are discussed

below.

MSC identification and localization

The painstaking studies of the Russian scientist,

Alexander Friedenstein provided much of the basic

knowledge of MSC biology (8,9). Over a period of two

decades, Friedenstein and co-workers demonstrated

that bone marrow derived adherent cells were capable

of committing to a number of lineages, including those

responsible for osteogenesis. To identify and quantitate

tissue MSC levels, the colony forming unit-fibroblast

(CFU-F) assay is commonly utilized (10). While of great

practical value, it is unlikely that this in vitro assay

provides an accurate assessment of the number of stem

cells that colonize a specific tissue niche. Nevertheless,

it is generally agreed that progenitor cell number in

adult tissues is very low: for example, in adult bone

marrow there is one MSC/104 –106 total cells (11).

Although there is some dispute about the effect of

patient’s age on MSC number, it is likely that stem cell

quantity decreases with age (12).

Aside from the ability to form CFU, more definitive

characteristics of the MSC include: expression of a large

number of proteins (antigens) on the cell surface

(CD44, CD71, CD90, CD105, CD120a, CD124, CD166

and Flt-3 and Kit ligands) and absence of antigens

specific for cells of the hematopoietic lineage (13).

In addition, these cells secrete a cassette of cytokines

(IL-6, -7, -8, -11, -12, -14, -15, LIF, GM-CSF) (14). These

proteins can direct the commitment of the MSC into

one of a number of different differentiation path-

ways. Ultimately, commitment and differentiation is

dependent on the biological characteristics of the tissue

niche itself. Viewed from this perspective, the current

focus on niche and MSC specific marker protein ana-

lysis represents a critical arena of stem cell research.

Use of MSC for dental and craniofacial
tissue-engineering

Depending on environmental cues, MSC have the

ability to differentiate (commit) to pathways that lead

to the formation of bone, cartilage, fat, muscle and

tendon (15,16). For dental and craniofacial tissue

Commitment

Lineage progression

Differentiation & maturation In
 t

is
su

e
In

 m
ar

ro
w

Myocyte Stromal cell Adipocyte Odontoblast Cementoblast Osteocyte Chondrocyte

Mesengenic process

Fig. 1. Cartoon showing differentiation of MSC into cells of skeletal

and dental tissues. The cartoon shows that MSC can commit to a

number of different pathways and assume the phenotype of cells of

muscle, bone, cartilage, fat, ligament and cementum. Commitment to

a particular lineage is driven by the presence of local morphogenic

factors. Lineage-committed cells progress through a number of

transitory stages. Once differentiation is initiated, proliferation is

down regulated and there is biosynthesis of tissue specific proteins. It

is thought that MSC are present in all organs of the body where they

serve to maintain tissue homeostasis.
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engineering, stem cells are used to generate osteo-

blasts, chondrocytes and periodontal ligament cells;

more recently there has been interest in engineering

odontoblasts and cementocytes (see Fig. 1). To pro-

mote osteogenesis, cells can be harvested from a

number of autologous sources including bone marrow

and fat, without significant donor site morbidity or

immunogenic response (17). Although vanishingly

small in number, they can be expanded in culture to

produce an adequate numbers of cells for tissue

engineering strategies (see Fig. 2). One advantage of

using committed MSC is that compared with resident

differentiated cells (e.g. osteocytes or chondrocytes),

which appear to be metabolically quiescent, these

committed cells display a high biosynthetic response. A

final advantage of using these progenitor cells is that

MSC do not display the same surface antigen profile as

mature cells. Accordingly, they can be used allogene-

ically as a therapeutic cell source.

Because of current concerns about HIV and other

lethal virus infections, autologous cell transplantation

therapy is now desirable. An obvious benefit of cell

therapy is that MSC can be harvested directly from the

patient, prior to tissue grafting, thereby eliminating

worries about infection, and with minimum compli-

cations associated with immune rejection of allogenic

tissue. Based on all of these considerations, tissue

engineering, using the patient’s own cells, offers a

number of clear advantages over conventional therapy

or genetic engineering using viral vectors.

Craniofacial applications

Bone marrow derived MSC are now under considera-

tion for the repair of craniofacial bone and even the

replacement or regeneration of oral tissues. Com-

monly, osseous defects are because of post-cancer

ablative surgery, trauma, congenital malformations and

progressive skeletal disease (18,19). These defects may

be treated with autogenous bone grafts and/or allo-

plastic materials (20,21). Reconstruction of craniofacial

and dental defects using MSC avoids many of the

limitations of both auto- and allografting techniques

(22). Studies using experimental animal models have

shown the utility of stem cell based craniofacial

regeneration procedures (23,24). From a practical

viewpoint, the basis for all of these procedures is that

stem cells are seeded onto an appropriate scaffold

material. Following proliferation and differentiation,

the hybrid is transplanted into the bone defect (Fig. 2).

Subsequent evaluation of the transplanted tissue shows

that the MSC generate a powerful osteogenic response.

Abukawa et al. used a novel scaffold design, with new

fabrication protocol, to generate an autologous tissue-

engineered construct. The scaffold was then used to

repair a segmental mandibular defect. The tissue

engineered construct promoted osteogenesis and

enhanced penetration of the bone with blood vessels,

thereby accelerating tissue regeneration (25). In an

experimental dog model, Yamada et al. showed that a

mixture of autologous MSC and platelet rich plasma

improved bone-implant contact and bone density in a

mandibular defect (26).

Development of new scaffold fabrication technol-

ogies has facilitated the repair of critical-sized and

three-dimensionally complex cranial defects (27).

Using a rapid prototyping technology, cell-scaffold

constructs have been prepared with a high cell:matrix

ratio, permeated by a dense vascular network.

Mechanical testing of the reconstructed area revealed

partial integration with the surrounding calvarial

bone (28). Mechanically, these constructs achieved

yield strength of about 85–90% of normal bone (28).

Recently, it was shown that the patient’s own tissues

could be utilized to synthesize a bone-tissue substi-

tute (29). In this study, an extended mandibular

discontinuity defect was repaired by ossification of a

custom-designed bone transplant implanted within

the latissimus dorsi muscle of an adult male patient.

After 7 weeks, the implant was then used to repair

the mandibular defect. New bone formation was

reported and the patient displayed improved masti-

cation (29).

To further enhance the regenerative potential of

MSC, genetic engineering technologies have been

In vitro maturationDonor tissue MSC

Morphogens

In vivo Implantation

Fig. 2. A flow diagram showing the strategy utilized for engineering

MSC to regenerate damaged/diseased tissue. MSC are isolated from

donor tissue (bone marrow or dental tissues) and cultured on bio-

degradable scaffolds in the presence of factors (morphogens) that

support their differentiation into cells of the target tissue. This cell-

scaffold construct is then transplanted into the patient to enhance

tissue regeneration.
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utilized (30). Thus, to extend the life span of MSC, and

to enhance osteogenesis, cells have been engineered

with human telomerase reverse transcriptase (30,31).

The telomerase has also been shown to activate oste-

ogenesis by fat-derived MSC (32). In a recent study, the

sonic hedgehog gene was transfected into marrow and

fat-derived MSC to repair a cranial bone defect (33).

Quantitative analysis of the new tissue confirmed that

there was a significant increase in bone regeneration by

the gene-enhanced cells (33). In summary, cell-derived

therapy that is focused on the repair of osseous defects

has been enormously successful. Because of the over-

whelming success of these animal studies, numerous

clinical trails are now in progress to treat human cra-

niofacial defects.

Dental pulp applications

Unlike bone, dentin is not remodeled throughout life.

However, since there is evidence of limited repair, it

was hypothesized that progenitor cells present in the

dental pulp differentiate into odontoblasts. Gronthos

et al. have isolated highly proliferative cells from adult

human dental pulp that exhibit a similar immuno-

phenotype to bone marrow derived MSC. Importantly,

in culture these cells display high alkaline phosphatase

activity and form densely calcified nodule (34). In vivo

transplantation experiments showed that these cells

can form a dentin-like structure. In contrast to bone

marrow derived stem cells, the pulp cells do not sup-

port the formation of a marrow or adipocytes, elements

that are lacking in the dental pulp itself (34). Recently,

multipotential stem cells were isolated from exfoliated

human deciduous teeth (35). The reparative potential

of these cells is new being scrutinized.

Cementoblast-like cells applications

Despite profound differences in the organization of

bone and cementum, it is not clear if these mineralized

tissues are formed by two distinct cell types, or by an

osteoblast-like cell that responds to environmental

signals that are characteristic of a dental niche. Dif-

ferentiating between these two possibilities has been

difficult, partly because of a lack of specific markers for

cementocytes. However, since human (36) and murine

(37) cementum-derived cells have been isolated from

healthy teeth it may be possible to answer this difficult

problem using genomics and proteomic techniques.

Very recently, Sato et al. have developed a bovine ce-

mentoblast progenitor line (38). These cells were

transplanted subcutaneously into nude mice on a hy-

droxyapatite/tricalcium phosphate scaffold. Histologi-

cal analysis indicated that a bone-like tissue was

formed containing cementocyte-like cells in a miner-

alized matrix. Finally, it is worth noting that perio-

dontal ligament itself may serve as a source of cells for

cementum formation (36,39). Seo et al. reported isola-

tion of multipotential stem cells from the human per-

iodontal ligament. These cells displayed stem cell

characteristics in that they differentiated into ce-

mentoblast-like cells or adipocytes (40).

Periodontal regeneration

The literature on this topic is voluminous and a

critical analysis is beyond the scope of this review.

However, it is evident that the ligament complex

contains stem cells that can commit to a number of

pathways (bone, cementum and ligament). Moreover,

the cells respond to inductive factors that include

members of the TGF-b superfamily such as BMP-2

(41–44) BMP-12 (45), BMP-7 (46), TGF-b (47), PDGF

(48) and b-FGF (49). In an exciting recent study,

Kawaguchi et al. used autologous bone marrow MSC

in combination with atelocollagen to regenerate

ligament in an experimental Class III defect in dogs

(50). One month after implantation, there was

regeneration of cementum, periodontal ligament, and

alveolar bone. This study provided firm evidence that

MSC embedded in the appropriate environmental

niche can be used to regenerate a tissue as complex

as the periodontium.

Conclusions and future directions

Although our understanding of the molecular pathways

underlying MSC differentiation is expanding, transla-

tion of this knowledge into tissue engineering strategies

remains in its infancy. For this reason, research efforts

are focused on identifying factors that regulate and

control MSC proliferation and commitment. In the

context of orofacial tissue engineering, populations of

stem cells that form bone, cementum, dentin, and even

periodontal ligament have been identified. Within the
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next few years, these cells will be used to restore the

form and function of the oral cavity using autologous

cells, thereby circumventing histocompatability mis-

match and transmission of viral disease.
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