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Introduction – Understanding of apoptotic mechanisms

involved in tissue shaping is of particular interest because of

possible targeted modulation of the development of organ

structures such as teeth. Research of CD 95 mediated

apoptosis has been focused particularly on cell death in the

immune system and related disorders. However, CD 95

mediated apoptosis is also involved in embryogenesis of many

organs as the kidney, the lung, the intestine and tissue

networks such as the nervous system.

Design – Narrative review.

Results – This review briefly summarizes the current

knowledge of CD 95 mediated apoptosis in embryogenesis

with possible implication in tooth development. CD 95 receptor

and CD 95 ligand are found at early stages of tooth

development. The data suggest some positive correlations with

dental apoptosis distribution, particularly in the primary enamel

knot where apoptosis occurs during elimination of this

structure. CD 95 deficient (lpr) adult mouse tooth phenotype,

however, did not show any alterations in final tooth pattern and

morphology.

Conclusion – To date studies of apoptotic machinery during

tooth development show spatial localization of many of the

components together with precise and localized timing of cell

death. There is still much to be learned about the regulation

and importance of apoptosis in tooth development.

Nevertheless, the involvement of apoptotic regulatory

mechanisms interplaying with other molecules participates to

the cellular cross-talk in developing tissues, which opens

possible targeted modulations as suggested, e.g. for future

molecular dentistry.
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Apoptosis in embryogenesis and
odontogenesis

Apoptosis as an evolutionally conserved phenomenon

of programmed cell destruction has been involved in a

range of physiological processes from embryogenesis

to everyday homeostasis maintenance. During deve-

lopment, apoptosis participates particularly in struc-

tural shaping and elimination of unwanted cells,

regulation of cell number within tissues, elimination of

incorrectly localized or non-functional cells. Identifi-

cation of a wide spectrum of pro-apoptotic and anti-

apoptotic genes and their interactions has contributed

to knowledge of cellular mechanisms driving apoptotic

cell death and to understanding the morphogenetic

events in embryogenesis.

Following pioneering studies in C. elegans, the cur-

rent picture of developmental events shows many

central roles of apoptosis in a number of develop-

mental processes in mammals. Maturation of the

immune and neuronal systems undoubtly involves

apoptotic cell death (1,2). Apoptosis has also been

demonstrated as a sculptor of development (3), par-

ticularly in branching morphogenesis essential for

proper development of several organ tissues as the

lung, the kidney and the mammary and salivary glands

(4,5). Apoptosis is also evident in morphogenesis of

craniofacial structures such as the inner ear (6), pala-

tine rugae (7), alveolar bone (8), temporomandibular

joint (9) and teeth.

Tooth development (odontogenesis), is based on

reciprocal communication between epithelium and

underlying mesenchyme, and involves activation of

specific genes (10) including odontogenic homeo-

boxes (11). This molecular patterning is followed by

the first histological signs of developing teeth.

Apoptosis is not only balancing cell proliferation in

the tooth germ, but also seems to have an impact on

tooth morphogenesis. On the basis of temporospatial

distribution of apoptotic cells (12,13), dental apop-

tosis is suggested to have passive and active roles in

tooth development. However, functional confirmation

of morphogenetic roles of dental apoptosis and the

exact evidence on mechanisms employed are still

missing (14,15).

CD 95 mediated apoptosis in
embryogenesis and odontogenesis

Apoptosis undoubtedly takes part in embryogenic tissue

remodelling (16). However, not much is known about

the exact mechanisms involved. Members of the tumour

necrosis factor (TNF) family participate in many cellular

events such as organogenesis, immune reaction and also

apoptosis. TNF receptors are activated after binding of a

corresponding ligand and can trigger different intracel-

lular signalling pathways. However, they can act also as

decoy receptors. The most common machinery activa-

ted by the receptor–ligand complex occurs through an

adaptor domain, such as a death domain in an apoptotic

cascade or in a TRAF transduction pathway involving

Jun kinases and NF-kappa B.

TNF/NK-kappa B signalling has been shown to be

engaged in tooth cusp morphogenesis in molar teeth

(17,18). Eda, EdaR (receptor) and EdarADD (associated

death domain) have been studied using spontaneous

mouse mutations Tabby (19), Downless (20) and

Crinkled (21). Eda/Edar interactions were demonstra-

ted to regulate enamel knot formation in tooth mor-

phogenesis (22).

CD 95 (Fas⁄Apo-) represents another candidate

receptor engaged in dental apoptosis. CD 95 receptor

and ligand mRNA were found in mouse embryos as

well as adult mice, and were co-expressed particularly

in tissues characterized by apoptotic cell turnover (23).

CD 95 participates in involution and remodelling of the

reproductive system (24,25), motoneuron networks

(26,27), bone formation (28–30), eye angiogenesis (31)

and has also been found in the craniofacial region (32).

In teeth, CD 95 was consistently detected during the

secretion, transition and maturation of ameloblasts

(33). Key components of the CD 95 initiating complex

were detected also in early development of molar tooth

germs, particularly in the primary enamel knot (34).

The primary enamel knot is characterized as a tran-

sitory structure with a specific arrangement of cells and

accumulation of apoptotic activity (12). Specific

expression of several signalling molecules such as Shh,

BMP-2, 4, 7, FGF-4 can be found in the enamel knot cells

(35,36) and therefore enamel knots have been consid-

ered to act as signalling centres for tooth morphogenesis.
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CD 95 belongs to membrane I receptors (with intra-

cellular localization of C terminal domain) with con-

stitutional expression in lymphoid tissue (37). How-

ever, CD 95 is found on the surface of most cells (38).

Alternative splicing can produce a soluble form of the

receptor, without the transmembrane domain but still

with the ligand-binding affinity (39). Both, extracellular

and intracellular termini of the CD 95 receptor were

located in the areas of primary enamel knot where

apoptosis occurred as confirmed by morphological and

biochemical criteria (34).

The best understood physiological functions of CD 95

system are regulations within the immune system, also

confirmed by mutant analyses of CD 95 deficiency– lpr

phenotype (40) and CD 95 ligand deficiency – glc phe-

notype (41), both autosomal recessive. The abnormal

phenotypes of lymphoadenopathy and autoimmune

disorders are caused by impairment in apoptosis

induction. Adult tooth phenotype of lpr mice was stud-

ied to reveal morphological alterations caused by CD 95

deficiency. However, has not revealed any impact of CD

95 knock-out on the final crown tooth morphology

(unpublished data). This finding suggests some possible

hypotheses. CD 95 signalling may not be involved in

dental apoptosis but other pathways (42), or CD 95 may

rather be enhancing and promoting dental apoptosis

than triggering this process, or CD 95 molecules can be

inhibited by anti-apoptotic members such as Bcl-2

(43,32) at protein–protein level, or dental apoptosis in

general simply may not have any impact on final crown

morphogenesis. The latter explanation is supported by

the only functional study using caspase (and thus

apoptosis) inhibition in the primary enamel knot (44)

where no alterations in the tooth crown morphogenesis

were observed after 2 days caspase inhibition in explant

culture system. Nevertheless, apoptosis has still been

considered as a sculptor of development (3) and may

also have this role in tooth formation.

Other related molecules in embryogenic
and dental apoptosis

Apoptosis can be communicated by several extra – and

intracellular triggering of three general pathways lead-

ing to cell self-destruction: receptor mediated activa-

tion, mitochondria breakdown and alterations in

endoplasmic reticulum (45). In the intracellular cell

death machinery, caspases are considered to be the

main mediators (46). Consequent signalling following

triggering involves cascade reactions based on activa-

tion of different molecules and/or switching on/off

specific gene expression.

The mitochondria mediated apoptotic programme

can be switched by some kinds of cellular stress. This

signalling converges at the mitochondrial level and

initiates opening of transition pores followed by release

of proapoptotic factors as cytochrome-c (47,48), Smad/

Diablo (49), AIF (50), endonucleases (51). Members of

Bcl-2 family involving both, pro-apoptotic (e.g. Bax,

Bim, and Bid) and anti-apoptotic (e.g. Bcl-2 and Mcl-1)

molecules (52), act as regulators of mitochondrial

apoptotic alterations.

Activation of specific membrane surface death

receptors, by binding their corresponding ligand mo-

lecules, starts apoptotic pathways in the cells (Fig. 1).

TNF receptor family involving CD 95 (Fas and Apo-1)

receptor along with others such as TNFR1 (p55 and

CD120a), DR3 (Apo-3, WSL-1, TRAMP, and LARD), DR4

(Apo-2 and TRAIL-R1), DR5 (TRAIL-R2, TRICK 2, and

KILLER) belong to widely studied molecules in apop-

totic signal transduction (53). These apoptotic recep-

tors display a homology in the extracellular cysteine

rich subdomain and also in the intracellular part, the

so-called death domain (DD) (54). DD enables associ-

ation of receptor with cytosolic adaptor molecules such

as FADD and TRADD (55,56), mediating signal trans-

duction to other signalling components (56). The

N-terminus of FADD death effector domain, recruites

procaspase-8 followed by formation of death-inducing

signalling complex (DISC). N-terminus of procaspase-8

binds and activates other downstream caspases such as

caspase-3, -4 or -7 (57,58). The caspase execution can

proceed in two different pathways, direct cleavage (59)

or an indirect effect communicated by release of mi-

tochondrial factors (60).

Interplay of BMP-4 inductive signals, FGF molecules

and homeobox genes such as Msx-1 and Msx-2 (61–64)

as well as other signalling pathways such as Shh and

Wnt (64–65) have been considered as modulators of

dental apoptosis. Specific molecular events may also

serve as a driving force for death induced by trophic

deprivation. However, primary enamel knot cells

undergoing apoptosis do not have receptors for growth

factors such as FGF-4 even when they secrete this

potent mitogen (66). In the absence of trophic support,
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CD 95 becomes sufficiently activated and binding of

CD 95 ligand could promote the apoptotic death in the

paracrine fashion. This could support more rapid

liquidation of apoptotic cells by caspase mediated

cleavage and thus more effective elimination by

apoptotic debris in the developing tooth organ where

professional phagocytes are still absent (67). Moreover,

both receptor mediated and intrinsic apoptotic

machinery can be switched in individual cells within

the population and depend on different signals (68).

Further functional experiments would be required to

determine the role of CD 95 system in odontogenesis.

Conclusion

To date studies of apoptotic machinery during tooth

development show spatial localization of many of the

components together with precise and localized timing

of cell death. Mice with null mutations in several of the

key molecules, however, do not exhibit major tooth

phenotypes. There is still much to be learned about the

regulation and importance of apoptosis in tooth

development. Nevertheless, the involvement of apop-

totic regulatory mechanisms interplaying with other

molecules participates to the cellular cross-talk in

developing tissues, which opens possible targeted

modulations as suggested, e.g. for future molecular

dentistry (69).
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Fig. 1. Schematic drawing of the basic apoptotic pathways induced by CD95 receptor – CD95 ligand interactions. The apical caspase-8 is

activated in death inducing signalling complex (DISC) – activated CD95 receptor, FADD, procaspase-8. Caspase-8 either directly cleaves

procaspase-3 or Bid which starts mitochondria mediated pathway via apoptosome formation – cytochrome-c, procaspase-9, Apaf-1 followed

by caspase-9 activation and procaspase-3 cleavage. The central caspase-3 executes further cleavage of substrates.
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