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Objectives – To provide a comprehensive literature review describing recent

developments of the recombinant adeno-associated virus (rAAV) vector and

exploring the therapeutic application of rAAV for bone defects, cartilage lesions and

rheumatoid arthritis.

Design – Narrative review.

Result – The review outlines the serotypes and genome of AAV, integration and life

cycle of the rAAV vectors, the immune response and regulating system for AAV gene

therapy. Furthermore, the advancements of rAAV gene therapy for bone growth

together with cartilage repair are summarized.

Conclusion – Recombinant adeno-associated virus vector is perceived to be one of

the most promising vector systems for bone and cartilage gene therapy approaches

and further investigations need to be carried out for craniofacial research.

Key words: adeno-associated virus; cartilage; gene therapy; mandible; rheumatoid

arthritis; temporomandibular joint

Abbreviations: bGHpA, bovine growth hormone polyadenylation signal sequence;

BMP2, bone morphogenetic protein; FGFR1, fibroblast growth factor receptor-1;

HSPG, heparan sulfate proteoglycan; MPCs, mesenchymal progenitor cells; PDGFR-a,

platelet-derived growth factor receptor; RA, rheumatoid arthritis; rAAV, recombinant

adeno-associated virus; TGFb1, transforming growth factor; TMJ, temporomandibular

joint; WPRE, woodchuck hepatitis B virus post-transcriptional regulatory element.

Introduction

Gene therapy is a technique to deliver small DNA or RNA sequences to

cells or tissues to correct a genetic defect or treat a disease. Currently, the

majority of gene therapies focus on adding genetic information to cells

rather than alteration of the genome (1). Gene transfer can be completed

in vivo or ex vivo, and both approaches have been examined for bone

regeneration. During in vivo gene transfer, a vector carrying the thera-

peutic DNA is directly implanted or injected into the patient. During

ex vivo gene transfer, a patient’s cells are harvested, expanded using cell

culture techniques, and transfected in vitro prior to implantation or

injection of the cells into the patient. During the past decade, gene

therapy has attracted increasing interest as a novel strategy for inducing

craniofacial bone formation (2).
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An ideal gene transfer vector should meet a number

of requirements: efficiency, safety, economy and con-

venience. It must be safe, i.e. it must not induce cellular

toxicity or provoke an immune reaction. It must be

capable of being delivered by injection, efficiently

injecting target cells, and expressing the transgene

product at a therapeutic level and under tight regula-

tion for the required amount of time (3). A number of

vector systems have been developed recently, both viral

and non-viral, to meet these requirements in delivering

therapeutic genes to bone tissues. The non-viral vector

based systems involve either the physical or chemical

transfer of genetic material, and are dependent on

cellular transport mechanisms for uptake and expres-

sion in the host cell. They include naked DNA alone

(4, 5), or DNA associated with carrier molecules (such

as liposomes or a polymer matrix) (6). Non-viral vector

are easy to manufacture, accept different sizes of

inserted DNA on the size of the inserted DNA, and

display fewer immunological and safety problems.

However, in Ohashi’s research (7), a naked DNA

injection alone (25–50 lg) resulted in a very faint

expression of transgene. This is consistent with

Yavandich’s findings (8) that direct intra-articular

administration of 100 lg naked DNA induced a very

low level of marker gene (Lac z) expression in both the

rat and rabbit synovium. Therefore, the poor trans-

duction efficiencies, transient transgene expression

and non-selective cell targeting prevent them from

wide clinical usages (7, 9, 10). In contrast, viral vectors,

e.g. retrovirus, lentivirus, adenovirus and adeno-asso-

ciated virus (AAV) are considered to be the appealing

delivery vehicles as they are quite efficient, associated

with higher infection efficiency, and generally provide

more preclinical and clinical utility than non-viral

vectors (11). They can achieve prolonged expression,

and their transfection efficiency approaches 100%,

dramatically exceeding the level reached by most non-

viral methods (2). However, retrovirus are incapable of

infecting non-dividing cells such as muscle cells and

neurons, and may give rise to insertional mutagenesis

(the activation of a cell proto-oncogene or the disrup-

tion of a tumor suppressor gene) (12, 13). Lentivirus, a

member of retrovirus, can transduce dividing as well as

non-dividing cells with a risk of random integration

into host genome giving rise to insertion mutagenesis, a

fact that limits its clinical application (13). The great

shortcoming of adenoviral vectors is the stimulation of

a significant host immune response. A T cell-mediated

immune response against capsid proteins of adenovi-

rus results in a local inflammatory reaction leading to

transduced cells lysis and a shorter duration of trans-

gene expression in immunocompetent animals and

humans (14).

Since 1984, when Hermonat and Muzyczka dem-

onstrated the AAV as a vector for the transduction of a

foreign gene into a host chromosome (15), the cloning

of rAAV has become routine for gene therapy study.

And the improvement of in vitro packaging systems

has been developed by constructing the AAV helper

plasmid, which makes it possible to produce high-titer

AAV vectors in the absence of infectious helper

adenovirus (16). AAV is a favorable choice as it has

several major advantages. It can efficiently infect

dividing as well as non-dividing cells with a broad

host range including human and murine embryonic

stem cells (17), hematopoietic progenitor cells (18, 19),

mesenchymal stem cells (20–23), chondrocytes

(24–27), osteoblasts (28), myoblasts (13), brain cells

(29), hepatic stellate cells (30), and epithelial cells (31).

Delivery by rAAV vectors results in long-term expres-

sion of therapeutic genes as it persists mostly in epi-

somal or concatameric form but not integration into

host chromosomal DNA, does not result in destructive

cellular immune responses against infected target

cells, and has not been associated with any human

disease (32–40). The positive results from proof-of-

concept studies in cell culture and animal models and

the accumulation of pre-clinical safety data has led to

the initiation of phases I and II clinical trials of rAAV2

mediated gene therapy. The primary drawback of this

vector system is the limited packaging size with a

maximum capacity of 5.2 kb, which has always been

thought to preclude its application for delivering lar-

ger size of transgene (41). Recently, several strategies

have been developed to overcome this size limitation

by exploiting the unique heterodimerization ability of

AAV DNA (42). The split-gene or trans-splicing strat-

egy has effectively increased the packaging size of

rAAV vectors up to 10 kb and has been applied to

factor VIII cDNA (7 kb) (43, 44). Hence, based on the

characteristics of the vectors and the nature of the

target tissues, rAAV-mediated gene transfer is under

investigation to treat a large number of bone and

cartilage diseases and is thought to be the most

promising approach (45).
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In this review, we will focus our discussion on the

ongoing efforts made in (1) understanding the sero-

types of AAV and the structure of the AAV2 genome; (2)

exploring the integration and life cycle of AAV; (3)

investigating the immune response and regulating

system for AAV gene therapy; (4) summarizing the

advancements of AAV application for bone growth,

growth modification of temporomandibular joint (TMJ)

together with rheumatoid arthritis (RA) treatment.

Serotypes and structure of AAV
Serotype of AAV

Adeno-associated virus is a small, non-enveloped, sin-

gle-stranded linear DNA parvovirus and is the smallest

known virus (46). It belongs to the dependovirus genus

of the parvovirus family. The virion is icosahedral in

shape and measures 20–25 nm in diameter (47). Up to

now, 11 serotypes were identified and they have dif-

ferent intrinsic properties. The sequence homology

among the different serotypes is high. Sequence com-

parison revealed that the greatest divergence lies in the

capsid proteins (48–50) leading to differences in both

tropism and serological neutralization (51). The natural

host of AAV-1 is not clear at present. AAV-2, 3 and 5

were later isolated from human clinical specimens.

AAV-4 was isolated from a culture of a rhesus monkey

kidney cells. AAV-6 appears to be have arisen from

homologous recombination between AAV-1 and 2 (52).

Recently, five novel serotypes were isolated from non-

human primates. AAV-7, 8 and 9 were found in rhesus

monkeys (53, 54) and AAV-10 and 11 have been isolated

from cynomolgus monkey (55).

A tremendous amount of study has been performed

on understanding the biology of AAV2. Therefore, it has

been the most widely utilized serotype and is the best

characterized among all naturally discovered serotypes

(56). AAV2 uses heparan sulfate proteoglycan (HSPG), a

widely-expressed cell surface receptor, as a primary

receptor for cell attachment (57), and it also utilizes

co-receptors to assist its internalization, including the

fibroblast growth factor receptor-1 (FGFR1) (58), inte-

grin avb5 (59), and hepatocyte growth factor receptor

(HGFR) (60). It has been demonstrated that AAV4 binds

to O-linked a2-3 linked sialic acid, while AAV5 binds to

N-linked a2-3 or 2-6 sialic acid (61). A co-receptor,

platelet-derived growth factor receptor (PDGFR-a), has

also been identified for AAV5 (62). While the cellular

receptors for some AAV serotypes are still unknown.

Moreover, recombinant cross-packaging of AAV gen-

ome of one serotype into other AAV serotypes has

opened the possibility to optimize tissue-specific gene

transduction and expression. Interest in these alter-

native serotypes has been driven by the fact that they

exhibit different cellular tropisms and are often more

efficient than AAV2 in vivo. For example, by injection of

different serotypes via tail vein, serotype 2 preferen-

tially transduces liver and spleen while serotype 5 is

likely to infect spleen and lung in mice (63, 64). The

transduction efficiencies of differentiation status of

host cells also vary among various serotypes. Whereas

AAV-2 transduced undifferentiated C2C12 mouse

myoblasts more efficiently than differentiated ones,

AAV2/10 and AAV2/11 transduced the undifferentiated

myoblasts less efficiently than differentiated ones (55).

These hybrid serotypes not only could achieve high

efficiency of gene delivery to a specific targeted cell

type, but also serve as a tool for studying AAV biology

such as receptor binding, trafficking and genome

delivery into the nucleus.

Structure of AAV

The AAV-2 is the most extensively studied serotype.

The AAV-2 virion has a genome of 4675 bases (65). The

genome of AAV contains two large open reading frames

(ORFs): the 5¢ (or left) ORF (rep) encodes the non-

structural Rep proteins for viral replication and the 3¢
(or right) ORF (cap) encodes the structural capsid

proteins (66). The Rep proteins are required in all

phases of the viral life cycle, including transcription,

replication, encapsidation, integration, and rescue

from the latent state (66). The rep contains four over-

lapping ORFs which encode four proteins of 78, 68, 52

and 40 kDa. Rep 78 and Rep 68 are involved in the DNA

replication process through their interactions with the

Rep-binding elements and the terminal resolution sites

which are located in the ITRs. Rep 52 and Rep 40

participate in the generation and accumulation of sin-

gle-stranded viral genome from the double-stranded

replicative intermediates (67). The capsid proteins are

crucial for rescue, replication, packaging, and integra-

tion of AAV. The cap encodes three capsid proteins, VP1

(90 kDa), VP2 (72 kDa) and VP3 (60 kDa), under the

control of the p40 promoter (31). At each end of the
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genome there are a 145-base inverted terminal repeats

(ITRs) (68).

Integration and life cycle of AAV
Integrative systems

The defective replication and non-pathogenic nature of

wild-type AAV triggered the rapid development of rAAV

derived from AAV2. The construction of recombinant

AAV vectors is based on transient triple transfection

protocols of target/producer cells (such as human

embryonic kidney cell line (HEK-293), which requires

the following genetic elements (Fig. 1) (69):

• The plasmid with the sequence of the rAAV genome,

which is derived by deleting structural genes (cap)

and genes essential for virus replication (rep) and

replacing them with sequences carrying a therapeu-

tic gene. It consists of the expression cassette of the

therapeutic gene (flanked by ITRs), along with an

appropriate promoter, woodchuck hepatitis B virus

post-transcriptional regulatory element (WPRE), and

bovine growth hormone polyadenylation signal

sequence (bGHpA). The insert gene cannot exceed

4.5 kb.

• The plasmid with the sequence encoding the two

AAV ORFs of rep and cap, which called pHelper

(helper plasmid) for complementing the missing

rAAV functions.

• The plasmid with the required helper functions

encoded by the natural auxiliary virus, usually

Adenovirus (E1A, E1B, E4, E2A and VA1 being pro-

vided by the HEK-293 genome) (16).

The vector plasmids and helper plasmids were

co-transfected into permissive cells (usually HEK-293

cells), then packaged rAAV2 virions containing only the

therapeutic vector genomes. Recombinant vector par-

ticles, thus produced and purified. The most classical

and easy way remain the ultracentrifugation on a CsCl

or iodixanol gradient (70). More complex techniques

based on chromatography especially for rAAV2 (71, 72)

are now well developed for the generation of high

purity grade and up-scaled production suitable for

human clinical application.

In absence of helper virus, AAV in infected cells

cannot produce any progeny virus and enters a latent

state. Latent AAV genomes exist in a number of forms

including site-specific integrated forms, episomal

forms, and randomly integrated forms (Fig. 2). The

ITRs and either Rep78 or Rep68 were sufficient for the

replication of the AAV genome and its integration into a

specific site, referred to as AAVS1, which is found at

chromosome 19 (19q13.3qter) and is mapped to the

first exon of myosin binding subunit 85 of protein

phosphatase 1 (18, 73, 74). The rAAV vectors were

deleted all the viral genes of rep and could not integrate

in the AAVS1 locus and most of them would persist in

an episomal state, which ensures that the treatment is

innocuous, and that there is no risk of insertional

mutations (75, 76). Although rAAV are devoid of viral

genes, various approaches aiming at providing the

necessary Rep function along with the rAAV have been

envisioned. If Rep protein is provided trans,

site-specific integration can occur (73). When a latently

infected cell encounters superinfection by any of the

helper viruses, the integrated AAV genome undergoes a

productive lytic cycle (77). Random integration has

been demonstrated in established cell lines, but it is at

low frequency in primary cultures together with in vivo

investigation (78). The major advantage of AAVS1-

directed integration system lies in the theoretical

reduction of random integration, with its possible

adverse insertional mutagenesis. Several preliminary

attempts have relied on different systems ranging from

Fig. 1. The three plasmids-packaging system for rAAV vectors (see

text for details).

Fig. 2. Life cycle of rAAV virus. The recombinant virus first attaches to

the cell surface by binding to the receptors and coreceptors, followed

by internalization and intracellular trafficking. The virus then pen-

etrates the nuclear membrane and release the vector genome from

single strand DNA (ss) conversed to double strand (ds) DNA. The

rAAV genomes exist in three forms in the nucleus including site-

specific integration (a), episomes (b), and randomly integration

(c). Finally, the infected cells secreted the therapeutic protein.
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plasmid transfection to viral infection by multiple AAVs

(one being the recombinant and one bearing the rep

gene) or of hybrid viral systems based on chimeric Ad/

AAV vector. These approaches are still in their infancy

and have been essentially assessed in vitro (79–81).

However, if such a specific integrative system is to be

further developed for human application, the following

safety and regulatory constraints should be considered.

First, the Rep proteins should be temporarily supplied,

to allow only the integration of the rAAV but not a later

excision/rescue event from the integrated provirus.

Second, a low level of Rep would presumably be pref-

erable, this allows the integration pathway rather than

the replication pathway to be utilized, but also because

Rep proteins are cytotoxic at high level. Finally, AAVS1

is closely correlated with the slow skeletal troponin T

gene (82). Although natural integration seems to have

no adverse effect in humans, integration of rAAV close

to this gene needs to be shown to be innocuous.

Life cycle of AAV

The life cycle of AAV has been studied in detail. At the

cellular level, AAV undergoes five major steps before

achieving gene expression (67) (Fig. 2): 1) binding to

cellular surface receptors and then be internalized

through interactions with coreceptors; 2) clathrin-

mediated endocytosis, a dynamin-dependent process;

3) trafficking through the cytoplasm to the nucleus;

4) uncoating of the virus to release the vector genome;

and 5) conversion of the genome from single-stranded to

double-stranded DNA as a template for transcription in

the nucleus. The viral genome of AAV is transported to the

nucleus within minutes after infection, in vivo trans-

duction takes days to weeks as a consequence of lagging

second-strand synthesis (83). The cumulative efficiency

with which rAAV can successfully execute each individual

step, determined the overall transduction efficiency. Rate

limiting steps in rAAV transduction include the absence

or low abundance of required cellular surface receptors

for viral attachment and internalization, inefficient

endosomal escape leading to lysosomal degradation, and

slow conversion of single-stranded to double-stranded

DNA template (84). The circular concatamers (head-to-

head and head-to-tail) are formed by means of intra- and

inter-molecular recombination. Hence, rAAV vectors are

mostly persist in an episomal state with low frequency of

integration (85, 86).

Immune response to AAV and regulated
viral expression system
Immune response

The immunologic profile of the AAV is of great

importance in the evaluation of the vector system for

the use in skeletal field. The host immune responses

elicited by the vector may severely impair the success

of a gene transfer protocol in clinical trials. Moreover,

recent studies have shown that one of the disadvanta-

ges of AAV vectors is that they can induce both cellular

and humoral immune responses against the transgene

product (87). To understand the scope of this chal-

lenge, studies have determined the prevalence of serum

antibodies in the population. These studies have

defined the subset of the population with seropositive

antibodies against AAV type 2 over age 50–96%, teen-

agers to 30% being neutralizing (88, 89). In experi-

mental animals, neutralizing antibodies have been

shown to eliminate (90) or greatly reduce (91) the levels

of transgene expression of the readministered vector.

This host humoral immune response directed against

the capsid proteins, but not the transgene product, is

responsible for the failure of successful rAAV2 read-

ministration. Recently, Cottard et al. collected synovial

fluid (SF) from patients with joint disease and tested

the influence of SF on AAV2 mediated gene transfer to

chondrocytes. The results suggested that anti-AAV2 IgG

were identified in SF from 13 of 18 patients. Moreover,

anti-AAV IgG level in SF was highly linked to the

neutralizing activity. Therefore, a more efficient way to

increase AAV-mediated gene transfer and bypass the

immunity to AAV2-derived vectors has emerged with

the development of other alternative AAV serotypes to

avoid a pre-existing immune response or manipulating

the virion to alter antigenic determinants.

Regulated viral expression system

A recent advancement in gene therapies for controlling

and monitoring bone and cartilage regeneration is the

incorporation of regulators in the gene construct. By

controlling the timing, duration, and level of expres-

sion, the transgene function could be controlled

in vivo. The regulatory system based on the use of small

molecules, such as tetracycline, doxycycline or rapa-

mycin, is the most widely used and represents a ver-

satile system for gene therapy applications (92, 93).
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This approach allows for transient expression of the

therapeutic protein even though the transgene has

been incorporated into the host chromosome. Gafni

et al. constructed a dual-construct vector using rAAV-

BMP2 (bone morphogenetic protein) mediated gene

delivery, which was regulated by the tetracycline

sensitive promoter tetON (28). Post-administration,

doxycycline binds to the transactivator and the newly

formed complex acquires a high affinity for the Tet-

responsive element, which is located upstream of the

cytomegalovirus (CMV) minimal promoter, and thus

activates the transgene’s promoter and upregulates

BMP-2 transcription. In the absence of doxycycline, the

transactivator cannot bind to the tet-responsive ele-

ment and transcription of the BMP-2 gene is sup-

pressed. Therefore, controlled bone formation can be

achieved by regulating BMP-2 expression via tetracyc-

line by using the TetON-regulated promoter.

Therapeutic application of AAV

Table 1 gives an overview of rAAV-mediated target

genes on bone growth and cartilage repair. These will

be discussed in the following sections.

AAV gene therapy for bone regeneration

Adeno-associated virus mediated BMP2, 4, 7 could

infect and efficiently convert C2C12 cells from myo-

blasts into osteoblast lineage cells in vitro (13, 94, 95).

In vivo, AAV-BMP2 vectors were directly injected into

the hindlimb muscle of Sprague–Dawley rats. Signifi-

cant heterotopic new bone formation was detected as

early as 3 weeks post-injection, and BMP-2 expression

could persist for at least 8 weeks in some immature

regions (94). Using the same animal model, the further

work demonstrated a greater osteogenic response was

achieved when a lower dosage of rAAV-BMP-2 was

combined with an Ad-BMP-2 vector, at a dosage low

enough to avoid triggering an immune response (96).

AAV-BMP-4 delivery could also successfully induce

endochondral bone formation at the immediate site of

the vector injection in SD rats (13). More recently, Li

and colleagues compared the osteogenic potential of

AAV5hBMP6 and ADhBMP6 in immunodeficient and

immunocompetent rats. The obvious ectopic bone

induced by AAV5-BMP6 appeared later than by

AD-BMP6. In immunodeficient rats (athymic nude

rats), the amounts of ectopic bone induced by AD-

BMP6 (injection of 5 · 107 PFU) were significantly

larger than by AAV5-BMP6 (injection of 2.3 · 1012

particles). However, the amount of bone in immuno-

competent rats (SD rats) induced by AAV5-BMP6 was

significantly greater than that induced by AD-BMP6

(97).

Previous study demonstrated that AAV-osteoproteg-

erin (OPG) gene therapy effectively reversed estab-

lished osteopenia in ovariectomized mice (98). The

recent study demonstrated that a single intramuscular

injection of AAV-hOPG resulted in vividly increased

serum concentrations of hOPG within a few days after

transduction followed by consistently elevated levels of

hOPG till 8 weeks. The increased level of OPG could

significantly reduce the osteoclast number and activity

in the fracture callus. AAV-OPG decreases the fracture

remodelling but did not impair the enhancement in

structural strength or ultimate stress of the fractures

(99). It has been shown that AAV vector-mediated gene

delivery of OPG to mice with micro-particle-induced

osteolysis reduces both osteoclasteogenesis and bone

resorption (100) and (101). A recent work by Kostenuik

et al. (98) investigating systemic vector-related toxicity

revealed that AAV-OPG has an acceptable safety profile

and safety margin. It has recently been shown that

ultraviolet (UV) light irradiation combined with rAAV

markedly improved the protein expression of trans-

forming growth factor-b1 (TGFb1) from human bone

marrow derived-mesenchymal stem cells (HuMSCs)

(23). Kumar et al. (20) established the ovariectomized

mouse model and demonstrated the ex vivo osteopor-

osis gene therapy with rAAV-BMP2 transduced MSCs

could promote new bone formation. More recently, Ito

and colleagues established an unconventional means

to evaluate cortical bone healing with femoral allografts

coated with freeze-dried rAAV encoding receptor acti-

vator of nuclear factor kappaB ligand (RANKL) and

vascular endothelial growth factor (VEGF) (102) or

receptor of activin receptor-like kinase-2 (caAlk2) (103)

and identified a significant increase in bone formation.

The results convinced that cell-free, rAAV-coated allo-

grafts have the potential to revitalize in vivo following

transplantation. Therefore, AAV vector is an efficient

and safe procedure to facilitate gene induction in the

skeletal system, and has advantages over all the viral

and non-viral vectors. However, its ability to transduce
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craniofacial bone in vivo is still unknown, and this re-

quires further investigation.

AAV mediated gene delivery to joint for growth modification

Adeno-associated virus has been shown to be an

effective vector for gene transfer to human chondro-

cytes, achieving transfection efficiency of nearly 50% for

at least 28 days (25). Using ultraviolet (UV) light, it was

found that the transduction efficiency and expression of

the transduced gene were significantly enhanced in

rAAV-infected primary chondrocytes and in the super-

ficial zone of cultured intact articular cartilage without

simultaneously causing cytotoxicity and DNA

mutations (104, 105). More recently, the in vivo study

demonstrated that pre-treatment with 6000 J/m2 of

long-wavelength UV leads to a 10-fold increase in the

transduction of articular chondrocytes after 1 week

(105). Furthermore, repair of full-thickness defects in

rabbit articular cartilage could be enhanced by intra-

articular administration of AAV2-fibroblast growth fac-

tor (FGF-2) and basic fibroblast growth factor (bFGF)

(106, 107). However, most of the available gene delivery

systems could hardly efficiently and persistently trans-

duce the chondrocytes of articular cartilage embedding

with the rich matrix in vivo. Kuboki et al. (108) firstly

delivered reporter gene (LacZ) into the articular surface

of the TMJ using the adenovirus vector. Using the

Hartley guinea-pig model, they observed LacZ gene

expression in the articular surfaces of the temporal

tubercle, articular disc and synovium of the TMJ, which

lasted 4 weeks after injection. However, a low trans-

duction rate into the chondrogenic layer was observed.

Recently, effective transfer of lentivirus mediated LacZ

gene into the hypertrophic layer of condyle was reported

by local injection into the TMJ space (109). However,

Lentivirus, the member of retrovirus can be integrated

into host genome randomly and may give rise to inser-

tion mutagenesis, so as to limit its clinical application

(12, 13). More recently, we were able to construct a

rAAV2 mediated delivery vehicle where reporter gene of

eGFP could be delivered in the deeper layers of the

mandibular condyle, which provides a basis to select

some target genes to regulate mandibular condylar

growth (110). Moreover, the response of condyle by

rAAV delivery is different from that of knee joint, the

transgene expression was only observed in synoviocytes

and chondrocytes in arthritic knee joints of transgenicT
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mice by rAAV delivery, but no or less expression of the

delivered genes was detected in the normal articular

cartilage (106, 111, 112). In the knee joint cartilage, the

chondrocytes are embedded in a well-organized extra-

cellular matrix which is different from the articular

surfaces of the TMJs covered by a fibrous connective

tissue. Hence, the pattern of expression for AAV after

intraarticular injection is variable according to the dif-

ferent anatomical structure.

AAV gene therapy for arthritis

Among potential vector systems for gene therapy

application in RA, rAAV serotype 2 has been frequently

employed for gene transfer experiments in arthritis and

has received increasing attention. Madry et al. (26)

demonstrated that infection efficiency of AAV-LacZ

exceeded 70% for isolated normal human adult articular

chondrocytes and osteoarthritic human articular

chondrocytes and the marker genes were stably

expressed. Another in vitro study demonstrated that the

AAV-TGFb1 vector equally and efficiently transduced

both osteoarthritic human chondrocytes and a human

normal articular chondrocyte cell line (24). The feasi-

bility of direct in vivo gene transfer to rat and mouse

arthritic joints, using AAV, has been well investigated

(111, 113). In most of the studies, reporter gene

expression peaked on days 3–7 and returned to baseline

levels 3–4 days after injection, whereas AAV2 genome

persisted within joints for at least 100–200 days (52, 112,

113). Importantly, transduction efficiencies revealed a

striking correlation with disease severity, maximal

transgene expression being observed at the peak of joint

inflammation (52). The pattern of expression after intra-

articular injection of AAV2 has been variable according

to studies, from periosteum-derived cells (114, 115),

synovial lining cells (52), fibroblast-like synoviocytes

(FLS) (116) to chondrocytes (112) and muscle cells (117,

118). The rAAV gene constructs encoding immunosup-

pressive cytokines such as interleukin 4 (IL-4) (111, 119),

IL-10 (120), or IL-1 antagonist (113) tumor necrosis

factor-a (TNF-a) inhibitors (118), TNF receptor-immu-

noglobulin Fc (TNF:Fc) (121) and anti-angiogenic factor

such as angiostain (122) showed high therapeutic effi-

ciency after both local and systemic administration.

Moreover, vectors based on at least seven other AAV

serotypes have also been developed and are being act-

ively pursued as gene delivery vectors. A recent study

reported that rAAV5 is the most effective rAAV serotype

for local gene therapy in RA over other 4 serotypes of

rAAV1-4 (123). Moreover, rAAV5-mediated gene therapy

targeting the nuclear factor (NF)-jB-activating kinase

IjB kinase (IKKb) locally in the joint significantly

reduced established arthritis in vivo (124). Recently,

proteasome inhibitors have been demonstrated to

enhance rAAV-mediated transgene expression in

human RA FLSs and suggested a possible approach to

regulate synovial transgene expression in vivo (116).

Stem cell gene therapy with AAV

Mesenchymal stem cells (MSCs) from bone marrow

possess the capacity for self-renewal and multilineage

potential to differentiate into osteocytes, chondrocytes,

myocytes, tenocytes, adipocytes, and neural cells

in vitro (125, 126). These mesenchymal progenitor cells

(MPCs) are attractive candidates as cellular vehicles for

skeletal tissue regeneration. Earlier reports demon-

strated the difficulties and problems in transduction

efficiency of rAAV into MSCs. The expression of exo-

genous gene was partly limited by lack of low-affinity

membrane-associated HSPG, and at least one of two

high-affinity co-receptors (the FGFR and the aVb5

integrin) (58, 59). Ju (22) reported that hydroxyurea and

etoposide can increase the transduction of hMSCs by

rAAV. With UV irradiation, the secretion of TGFb1

protein from infected hMSCs with AAV-TGFb1 can be

significantly increased (23). Recently, Chamberlain and

colleagues used AAV to disrupt the exon 1 of the

chromosomal COL1A1 collagen gene in MSCs which

were isolated from the patients with osteogenesis

imperfecta, demonstrating successful gene targeting in

adult human stem cells (127).

Conclusion

Local delivery of therapeutic genes by rAAV is a promising

approach to treat bone and cartilage disorders with sev-

eral potential advantages over systemic forms of targeted

therapy. In the field of dentistry, congenital and acquired

defects include hemifacial microsomia, micrognathia,

segmental craniofacial bone defects, cartilage damage,

TMJ arthritis and periodontal bone loss. The challenge

now is to precisely define optimal cellular targets,

therapeutic genes, and to develop safe, efficient and
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controllable ways to deliver such therapeutic genes to

target cells. Advances in determining the functional

mechanism of many of the new gene candidates for

craniofacial bone formation continue to be made (128).

Likely other potential therapeutic genes will soon be-

come available to facilitate the localized regeneration of

bone and cartilage repair. In the light of advances in the

recombinant molecular technology and viral biology,

rAAV production facilitated its use in human clinical tri-

als (129). Recombinant cross-packaging of AAV genome

of one serotype into other AAV serotypes has opened the

possibility to optimize tissue-specific gene transduction

and expression. Hence, different rAAV serotypes need to

be compared and select the efficient one for different

target cells. After studies in rodents, vectors should be

tested in large animals to ensure that they mediate safe

and long-term gene expression. In addition, studies on

appropriate regulation of therapeutic gene expression

will be important. In the near future, this novel technol-

ogy of in vivo rAAV-mediated gene therapy allowing cell-

specific, long-term and regulable therapeutic gene

expression could be applied in the field of dentofacial-

orthopedic research to treat patients with serious bone

and cartilage problems. Further proof-of-concept

advances are needed to bring this approach to fruition,

and to perfect a method that is low-risk, effective, and

requires only a short-treatment period.
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