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Objective – Various lines of evidence suggest that face shape may be a

predisposing factor for non-syndromic cleft lip with or without cleft palate (CL ⁄ P). In

the present study, 3D surface imaging and statistical shape analysis were used

to evaluate face shape differences between the unaffected (non-cleft) parents of

individuals with CL ⁄ P and unrelated controls.

Methods – Sixteen facial landmarks were collected from 3D captures of 80

unaffected parents and 80 matched controls. Prior to analysis, each unaffected

parent was assigned to a subgroup on the basis of prior family history (positive or

negative). A geometric morphometric approach was utilized to scale and

superimpose the landmark coordinate data (Procrustes analysis), test for omnibus

group differences in face shape, and uncover specific modes of shape variation

capable of discriminating unaffected parents from controls.

Results – Significant disparity in face shape was observed between unaffected

parents and controls (p < 0.01). Notably, these changes were specific to parents

with a positive family history of CL ⁄ P. Shape changes associated with CL ⁄ P

predisposition included marked flattening of the facial profile (midface retrusion),

reduced upper facial height, increased lower facial height, and excess interorbital

width. Additionally, a sex-specific pattern of parent-control difference was evident in

the transverse dimensions of the nasolabial complex.

Conclusions – The faces of unaffected parents from multiplex cleft families

displayed meaningful shape differences compared with the general population.

Quantitative assessment of the facial phenotype in cleft families may enhance efforts

to discover the root causes of CL ⁄ P.

Key words: 3D stereophotogrammetry; face shape; geometric morphometrics;

non-syndromic clefting; unaffected parents

Introduction

Non-syndromic cleft lip with or without cleft palate (CL ⁄ P) is the most

common craniofacial birth defect, affecting one out of 500–2500
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individuals per year depending on population ⁄ ethnicity

(1, 2). The high incidence of CL ⁄ P coupled with the

extensive care required for effective treatment under-

scores the importance of identifying the factors that

underlie its etiology. The development of an intact

primary palate requires the coordinated growth of the

oronasal prominences in a precise temporal-spatial

sequence (3, 4). Although still not fully understood, this

coordinated growth depends on a tightly orchestrated

cascade of molecular signals emanating from the

mesenchymal and epithelial cells that comprise the

embryonic facial prominences (5–7). Not surprisingly,

many of the genes implicated in the formation of the

face are also candidate genes for clefting. Altering the

function of one or more of these genes may disrupt

the normal pattern of facial morphogenesis, e.g., by

shifting the rate and ⁄ or trajectory of facial prominence

growth. Clefting is precipitated when these shifts

decrease the likelihood that adjacent oronasal

components will meet and subsequently fuse (8).

However, even slight shifts in these morphogenetic

processes can push an individual toward the threshold

for clefting. In such cases, the facial phenotype may be

altered in subtle ways, but without any readily visible

manifestation of clefting. The phenotypic diversity

associated with orofacial clefting is well described in

the clinical literature (9, 10), with cases ranging from

complete bilateral clefts of the lip and palate to visible

microforms (e.g., bifid uvula). In recent years, it has

become increasingly clear that this phenotypic diver-

sity also includes numerous subclinical manifestations,

including aspects of craniofacial form (11).

Studies in humans and mice suggest that variation in

embryonic face shape contributes to the development

of orofacial clefts by mediating the spatial relationship

among the rapidly growing tissues that constitute the

nascent face. Since 1960s, numerous studies have

documented morphological differences in the embry-

onic face of mouse strains susceptible to spontaneous

clefting (e.g., A ⁄ WySn, CL ⁄ Fr) compared with non-

susceptible strains (12–15). Two findings stand out

from among these early comparative studies; cleft-

susceptible mice displayed altered orientation of the

medial nasal prominences and ⁄ or relative underde-

velopment of the maxillary prominences. In principle,

these morphogenetic shifts lead to an increase in cleft

liability by disrupting the normal relationship among

facial primordia. More recent studies, drawing on

advances in statistical shape analysis, have subse-

quently confirmed and expanded these findings (16, 17).

A handful of studies have also identified craniofacial

differences in adults from these same susceptible

mouse strains (18, 19), suggesting that altered facial

shape persists as a phenotypic marker throughout life.

Investigation of the relationship between face shape

and cleft predisposition in humans has focused chiefly

on documenting the facial phenotype of unaffected rel-

atives from cleft families when compared with unrelated

controls (20–22). The reasoning behind this approach is

straightforward: CL ⁄ P is a heritable condition and as

family members share a large number of genes, relatives

of affected individuals are also expected to carry a higher

proportion of putative cleft loci than non-relatives with a

negative family history. Consequently, systematic dif-

ferences in facial morphology between �at-risk� relatives

and �low-risk� controls can be interpreted as reflecting

differences in underlying genetic susceptibility. Evi-

dence for these systematic differences has been steadily

accumulating for over four decades. Studies comparing

unaffected relatives (parents and sibs) to controls have

documented quantitative differences spanning all re-

gions of the craniofacial complex (23–39). Unfortu-

nately, despite positive findings in every study to date,

defining the precise nature of these differences has been

problematic. Inconsistent and even contradictory

findings across studies are ubiquitous, likely reflecting

interstudy variation in data acquisition, sample

demographics, and other methodological factors.

Nevertheless, a recent meta-analysis of the cephalo-

metric literature was able to identify a handful of

systematic craniofacial differences in the unaffected

parents of children with CL ⁄ P compared with controls

(40); these differences included an increase in nasal

cavity width, interorbital width, cranial base length,

mandibular protrusion, upper face width, and lower face

height, along with a reduction in maximum cranial width

and upper face height. The primary conclusions of this

study were that parent-control differences were gener-

ally subtle and in many cases sex-specific and that a great

deal of among-study heterogeneity was present.

With current advances in non-invasive 3D surface

imaging it is now possible to move beyond the limita-

tions of traditional data capture methods like cepha-

lometry and direct anthropometry. Moreover, the

ability to marry the geometric fidelity of 3D imaging

data with the capabilities of modern statistical shape
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analysis offers a potentially powerful strategy for

uncovering subtle, yet relevant, aspects of craniofacial

dysmorphology (41–43). In a recent study utilizing 3D

surface imaging along with a variety of linear distance-

based methods, Weinberg et al. (44) demonstrated a

number of differences in craniofacial shape between

unaffected relatives from multiplex CL ⁄ P families and

matched healthy controls. Unaffected male relatives

displayed a combination of excess upper face and

cranial base width, increased lower face height, and

reduced upper facial height. Female unaffected rela-

tives also displayed an increase in upper face width, but

in contrast to males, did not show major changes in the

vertical aspects of the face and exhibited excess nose

width and midface retrusion.

In the present study, a geometric morphometric

approach is employed to assess face shape in unaffected

parents with one or more cleft-affected children. Geo-

metric morphometrics describes a suite of statistical

tools specifically designed for the analysis of biological

shape based on landmark coordinates (45–47). Because

of its ability to work directly with 3D landmark data and

provide intuitive visualization of shape variation,

geometric morphometrics is rapidly replacing more

traditional morphometric methods. Based on previous

findings, it is predicted that unaffected parents will not

only demonstrate statistically significant face shape

differences compared with controls, but that these

differences will be sex-specific and more pronounced in

those with a prior family history of the defect.

Materials and methods
Sample

After obtaining local ethics committee approval, unaf-

fected parents were identified through index cases

(affected probands) served by the Cleft Craniofacial

Center at Children�s Hospital of Pittsburgh or the Cleft

Palate and Craniofacial Institute at St. Louis Children�s

Hospital. For the present study, only Caucasian parents

from multiplex CL ⁄ P families (i.e., two or more affected

individuals) were included. These parents had no visible

manifestation of CL ⁄ P, including microforms of the lip

or soft palate. Parents from families with suspected

syndromic cases (screened by a board-certified medical

geneticist) or with a history of isolated cleft palate were

excluded in an effort to reduce etiological heterogeneity.

The parents in our sample were assigned to one of two

groups based on prior family history of CL ⁄ P. The first

group was limited to unaffected parents with a positive

family history of CL ⁄ P. In addition to having one or more

children with a cleft, eligible parents in this group were

required to have at least one other affected biological

relative on their side of the family. The second group

consisted of parents with a negative family history.

The parents in this group have one or more affected

children but no additional affected biological relatives.

A total of 80 unaffected parents were included in this

study. For the positive family history parent group, 36

unaffected parents (26 mothers and 10 fathers) met the

inclusion criteria. The remaining 44 unaffected parents

(21 mothers and 23 fathers) were assigned to the neg-

ative family history group. In 26 instances, the unaf-

fected father and mother were the biological parents of

the same proband. In the remaining families, only one

of the two parents was included. For each parent in

each group, an unrelated healthy control was matched

on the basis of sex, age (within 1 year) and ancestry.

Each parental group was therefore matched to a sepa-

rate control group. Controls at each site were ascer-

tained from the same geographic region as the case

families, and inclusion was limited to individuals with

no personal or family history of a craniofacial birth

defect and no personal history of facial plastic or

reconstructive surgery.

Data acquisition

Following informed consent, three-dimensional facial

surfaces were captured using either a Genex FaceCam

250 (Genex Technologies, Inc., Kensington, MD, USA)

or 3dMDface (3dMD, Atlanta, GA, USA) imaging sys-

tem. These commercially available imaging systems

utilize non-contact digital stereophotogrammetry to

capture high-resolution facial surface geometry along

with photo-realistic color and texture rendering. These

systems are able to acquire very fast captures (<1 s) and

have each been independently validated in terms of

measurement precision and accuracy (48–51). Meas-

urements derived from the Genex and 3dMD systems

have also been compared directly and found be highly

congruent (49).

Sixteen standard facial landmarks (52, 53) were col-

lected from each subject�s 3D facial scan (Fig. 1) using

either the Genex 3D Surgeon or 3dMDpatient software
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package. These landmarks were chosen for their high

reliability and ability to provide adequate facial cover-

age. Exocanthion (the outer corner of the eye) and

tragion (upper margin of the tragus on the ear) were

not included in the present study because these land-

marks could not be adequately visualized on a large

number of subjects. Once the landmarks were digitized

on the 3D facial scans, their corresponding x, y, and z

coordinates were saved for later analysis.

Statistical approach

Three-dimensional landmark coordinates for each

subject were aligned via Procrustes superimposition,

which fitted the data into a common coordinate sys-

tem through an iterative least-squares routine to

optimally center, scale, and rotate the landmark

configurations (54, 55). Procrustes analysis resulted in

a new set of 3D coordinates (Procrustes coordinates)

that describe shape. The Procrustes coordinates were

then subjected to an omnibus test of group differ-

ences in shape (Goodall�s F-test). In the present study,

the primary purpose of the F-test was to assess the

null hypothesis that mean face shape was equivalent

in unaffected parents and controls. Both standard and

permutation versions of the F-test for shape

difference were carried out using the IMP program,

Simple3D (56).

To determine the nature of the shape variation both

within and across groups, principal components anal-

ysis (PCA) and canonical variates analysis (CVA) were

applied to the Procrustes coordinate data (46). In shape

analysis, PCA reduced the dimensionality of the Pro-

crustes coordinate data into a more manageable

number of uncorrelated summary variables or �com-

ponents�, each capturing a distinct aspect of shape

variation. By plotting the component scores for each

subject along a set of orthogonal axes, PCA allowed for

the identification of those modes of shape variation

capable of separating pre-existing groups within a

dataset (e.g., parents and controls). CVA is also a mul-

tivariate data reduction method, but in contrast to PCA,

groups were specified a priori and the variance

parameters were optimized to maximally discriminate

between groups. Each canonical variate (CV) was a

linear combination of variables (i.e., shape coordi-

nates), weighted to reflect a distinct mode of shape

variation. The ultimate goal in CVA was to discover the

aspects of shape variation that best distinguished

among existing groups in a dataset.

Because the geometric morphometric approach

preserved the intrinsic geometry present in landmark

coordinate data, shape variation along a given principal

component (PC) or canonical discriminant axis could

be visualized as a displacement of points in 3D space

(57). In the context of the current study, modes of

shape variation that discriminated unaffected parents

from controls could be displayed graphically as shifts in

the relative position of facial landmarks, providing an

intuitive approach to visualize group differences in

shape. PCA of shape coordinates was carried out using

the program morphologika v2.5 (58), while CVA was

performed in MorphoJ v1.0 (59). All other statistical

tests were performed in SPSS v15 (Chicago, IL, USA).

Fig. 1. Facial landmarks used in the present study: 1 (nasion); 2

(prenasale); 3 (subnasale); 4 (stomion); 5 (sublabiale); 6 (gnathion); 7,

8 (endocanthion); 9, 10 (alare); 11, 12 (subalare); 13, 14 (christa

philtri); 15, 16 (chelion).
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Results
Parents with positive family history

For parents with a positive family history of CL ⁄ P, the

omnibus shape test revealed a significant difference in

mean face shape compared with demographically

matched controls (Procrustes distance = 0.023;

Goodall�s F = 1.576; p = 0.01). A permutation version of

the above F-test (400 resamples) yielded similar results

(p < 0.01). Despite the apparent difference in mean

shape, the level of within-group variance in shape was

found to be equivalent between unaffected parents and

controls (p > 0.05).

Principal components analysis of Procrustes coordi-

nates showed evidence of group discrimination along

the second and fifteenth principle components (PC2

and PC15), which together accounted for 14.5% of the

total shape variance. Separation of unaffected parents

from controls along PC2 was limited to males (Fig. 2).

This finding was confirmed by results showing that

mean PC scores on the second component differed

significantly between unaffected fathers and male

controls (p = 0.001). The shape changes associated

with PC2 (shifting from male controls to unaffected

fathers along the second principal axis of variation)

primarily involved an inferior and slightly anterior shift

in the position of the mandible, and a concomitant

superior, posterior, and medial shift of coordinates

comprising the nasolabial complex (Fig. 3). There was

also a slight inferior and lateral shift of the endocan-

thion points. Thus, compared with male controls,

unaffected fathers with a positive family history

appeared to possess a vertically shorter and more

retrusive midface coupled with vertical elongation of

the lower face and a reduction in width of the mouth

and lower nose. In contrast to PC2, PC15 showed evi-

dence of significant discrimination between unaffected

mothers and female controls (p = 0.006; Fig. 2). The

shape changes associated with PC15 (shifting from

female controls to unaffected mothers) were subtle and

primarily involved the lateral displacement of the alare

points, resulting in a broadening of the nasal base

(Fig. 3). Unaffected mothers also displayed some

0.05

0.025

–0.025

–0.05
PC2

P
C

15

–0.10 –0.05 0.05 0.10

Fig. 2. Plot of PC scores for unaffected parents with a positive history

of cleft palate (CL ⁄ P) and matched controls on the second and fif-

teenth shape components. In this figure, the two axes represent dif-

ferent principal components, each of which describe a distinct mode

of face shape variation. Every subject in the sample receives a score

on each component, represented by a single discrete point on the PC

plot. By color-coding the points according to group status, compo-

nents of shape variation related to group discrimination are revealed

visually by the clustering of points along one or more axes. Male

controls (dark yellow); unaffected fathers (violet); female controls

(red); unaffected mothers (light blue).

Fig. 3. Face shape variation associated with PC2 and PC15. The top

row of faces shows the orientation of the wireframe models below.

The wireframe models represent the extreme ends of the shape var-

iation associated with each component axis. The black wireframe

represents the hypothetical control extreme, whereas the superim-

posed red wireframe represents the hypothetical unaffected parent

extreme.
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evidence of reduced upper face height and decreased

philtrum width. No other PC showed evidence of group

discrimination in either sex.

Canonical variates analysis of shape coordinates

resulted in the extraction of three CVs, all associated

with meaningful, yet distinct, modes of group dis-

crimination. CV1 was associated with general sexual

dimorphism. The second and third CVs were both

related to parent-control discrimination; CV2 separated

unaffected mothers from female controls (Mahalanobis

distance = 2.151, p < 0.001), whereas CV3 was associ-

ated with the separation of unaffected fathers and male

controls (Mahalanobis distance = 3.059, p = 0.002).

Figure 4 shows a plot of subjects� scores along the

second and third canonical discrimination axes. The

shape changes associated with CV2 (moving from

female controls to unaffected mothers) included the

inferior, anterior, and lateral displacement of the

endocanthion points, the lateral excursion of points

relating to the alar cartilage, the superior and posterior

movement of the nasolabial complex, the anterior

displacement of nasion, and the inferior and anterior

projection of the mandible (Fig. 5). Thus, the face of

unaffected mothers was characterized by an increased

interorbital and nasal width, a reduction in upper face

height, a vertical lengthening of the lower face, and a

loss of facial convexity due to a combination of midface

retrusion, mandibular protrusion and forward projec-

tion of the superior nasal bridge. The shape changes

associated with CV3 were similar in many respects to

those observed in CV2; compared with male controls,

unaffected fathers demonstrated a marked flattening of

the facial profile, increased hypertelorism, a reduction

in the height of the upper face, and a lengthening of the

lower face (Fig. 5). However, in contrast to unaffected

mothers, unaffected fathers displayed a medial dis-

placement of landmarks comprising the nasolabial

complex, resulting in a prominent narrowing of the

nose, philtrum, and oral fissure.

Parents with negative family history

For parents with a negative family history of CL ⁄ P, the

omnibus shape test revealed no difference in mean face

shape compared with matched controls (Procrustes

distance = 0.016; Goodall�s F = 0.859; p = 0.72).

Accordingly, both PCA and CVA of shape coordinates

showed no statistical evidence of group separation for

either sex. In addition, there was no overall shape dif-

ference between parents with a positive family history

and parents with a negative family history (Procrustes

distance = 0.018; Goodall�s F = 1.114; p = 0.29).

Fig. 4. Plot of scores on the second and third canonical discrimina-

tion axes. Four groups are represented: unaffected mothers with a

positive family history of cleft palate (CL ⁄ P; light blue), female con-

trols (red), unaffected fathers with a positive family history of CL ⁄ P
(violet), and males controls (dark yellow).

Fig. 5. Face shape variation associated with canonical variates (CV2)

and CV3. The wireframe models represent the extreme ends of the

shape variation associated with each canonical axis. The black wire-

frame represents the hypothetical control extreme, whereas the

superimposed red wireframe represents the hypothetical unaffected

parent extreme. The magnitude of the shape change is exaggerated

for the purposes of visualization.
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Discussion

For over four decades, studies have sought to establish

a link between facial morphology and orofacial cleft

predisposition. The primary strategy for investigating

this relationship has been to describe the facial fea-

tures of the unaffected biological relatives of affected

individuals. Systematic facial differences between

these �at-risk� individuals and controls drawn from the

general population are hypothesized to indicate a

subclinical manifestation of CL ⁄ P. Such differences

are likely to be subtle in nature, requiring a rigorous

quantitative approach capable of dealing with the

complex 3D geometry of the human face. The present

study represents the first attempt to combine 3D

surface imaging with geometric morphometrics to

investigate face shape in unaffected parents from

CL ⁄ P families. This is also the first study of its kind to

divide parents explicitly on the basis of their family

history. As predicted, significant face shape differences

were present in unaffected parents compared with

controls. Moreover, these differences were statistically

significant only in parents with a positive family his-

tory of CL ⁄ P and were manifested to a limited extent

in a sex-specific manner.

The facial characteristics associated with CL ⁄ P pre-

disposition (regardless of sex) included retrusion of

nasolabial structures coupled with mandibular pro-

trusion and forward projection of the orbital-nasal

bridge. This combination of morphological changes

resulted in a pronounced flattening or loss of convexity

of the entire facial profile. Furthermore, in the vertical

dimension, the proportional relationship between the

upper and lower parts of the face was altered in unaf-

fected parents; middle and upper portions of the face

were reduced in height, while the lower face was

simultaneously elongated. In addition, unaffected

fathers and mothers to a lesser extent showed evidence

of increased interorbital distance. There were also

some sex-specific aspects of shape variation associated

with discriminating unaffected parents from controls.

These primarily involved oronasal structures. As evi-

denced in PC2 and CV3, unaffected fathers displayed a

reduction in the width of the nose, philtrum, and

mouth, giving the midface a more pinched appearance.

In contrast, unaffected mothers demonstrated minimal

changes in the width of the philtrum and mouth as well

as a dramatic broadening of the nasal ala.

Many of the facial differences observed in the present

sample of unaffected relatives have been previously

reported in the literature. Prior studies have docu-

mented prominent flattening of the facial profile

(23–27), decreased upper facial height (25, 27, 29, 31, 35,

37, 38), increased lower facial height (28–30, 60), and

increased inter-orbital width (26, 27, 29, 34, 39, 60, 61) in

unaffected parents. These findings were further sup-

ported by a recent meta-analysis of the parent-control

cephalometric literature (40). Although contrary

evidence exists for each of these findings, such agree-

ment is noteworthy, given the sizable disparity in

research methodology between the present study and

earlier reports. For instance, the vast majority of previ-

ous studies utilizes 2D cephalometry and ⁄ or direct

anthropometry, make little or no attempt to minimize

sources of heterogeneity in their study sample, and

employ statistical methods inadequate for describing

shape. In a corresponding study, Weinberg et al. (44)

applied Euclidean distance matrix analysis, an alterna-

tive method of statistical shape analysis, to 3D facial

landmark data from a partially overlapping sample of

unaffected relatives (sibs and parents), from multiplex

CL ⁄ P families and demographically matched controls.

In agreement with the present study, they found that

unaffected relatives displayed excess lower facial height,

reduced upper facial height, and greater soft tissue nasal

breadth (in females). Taken together, these results sug-

gest that a more definitive picture of the facial pheno-

type associated with CL ⁄ P predisposition is emerging.

Many of the facial characteristics observed in unaf-

fected parents are plausible, from a developmental

perspective, as risk markers for CL ⁄ P. Studies describ-

ing the embryonic face of cleft-susceptible mouse

strains consistently report changes in the size, shape,

and orientation of the facial prominences (12–17). The

loss of facial convexity in unaffected parents, due in

part, to excess midface retrusion, may relate back to a

localized reduction in early nasomaxillary prominence

growth. Relative underdevelopment of the maxillary

prominences has been reported in susceptible mice

(15–17), and there is evidence that midface reductions

may persist into adulthood (18). A similar phenomenon

of deficient maxillary growth may explain the pattern of

reduced middle and upper facial height in �at-risk�

parents. Facial prominence growth is mediated by a

number of genes including Msx1, Bmp4, Shh, and Fgf8

(6, 7, 62), all considered important candidates for CL ⁄ P.
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Unaffected parents were also characterized by a

conspicuous increase in inter-orbital distance. This

trait has been observed in individuals affected with

CL ⁄ P (63, 64) and animal models with experimentally

induced cleft lip (65). In the embryo, variation in

spacing between the orbits is most intimately related to

frontonasal prominence growth, which is mediated in

part by local Shh expression (65, 66). During later

phases of development, hypertelorism may be linked to

a broader set of changes relating to the horizontal

proportions of the upper face and cranial base. Exces-

sive upper facial breadth is one of the most consistently

reported features in unaffected relatives (24, 29, 34, 36,

39, 61) and was recently reported in adult cleft-

susceptible mice (19). Mechanistically, both excessive

facial width and relative underdevelopment of the

maxillary prominences will alter normal spatial rela-

tionships during the critical period of primary palate

formation, ultimately decreasing the probability of

successful contact and fusion.

Some of the shape differences between unaffected

parents and controls were manifested in a sex-specific

manner. CVA revealed two completely sex-specific

modes of facial shape variation (CV2 and CV3) sepa-

rating unaffected parents and controls. Specifically,

excessive nasal breadth was observed in female par-

ents, whereas male parents displayed significant nar-

rowing of the entire nasolabial complex. The finding of

increased soft-tissue nose width in females but not

males has been noted previously (44). In general,

studies using traditional morphometric methods to

compare the faces of unaffected mothers and fathers

independently to sex-matched controls report sex-

specific differences (26–28, 32, 33, 37, 39, 40, 44).

However, McIntyre and Mossey (36) failed to find any

sex-related shape changes in their cephalometric

analysis of unaffected parents and controls. In terms of

magnitude, there was evidence in the present study to

suggest that the parent-control facial differences were

more pronounced in males. While there is some

agreement with this in the literature (27, 28), many

other studies report either no systematic change in the

magnitude of parent-control facial differences across

the sexes (33, 34, 36, 39) or the opposite pattern, that

these differences are in fact more pronounced in

females (32). Thus, the sex-specific nature of the face

shape changes associated with CL ⁄ P predisposition

remains unclear. It is perhaps noteworthy that other

subclinical cleft traits (e.g., subepithelial lip defects)

have also been shown to be more frequent in male

relatives (67), particularly given the roughly 2:1 male

bias observed in CL ⁄ P.

The discovery of reliable phenotypic markers asso-

ciated with elevated CL ⁄ P risk may offer a number of

benefits. These markers may facilitate the detection of

clinically unaffected but genetically informative indi-

viduals; these are individuals who may be carrying

putative susceptibility alleles but due to reduced pen-

etrance they do not display any visible manifestation of

an overt cleft. At a practical level, the identification of

�at-risk� individuals within CL ⁄ P families can improve

the accuracy of recurrence risk estimation, ultimately

leading to improvements in genetic counseling. For

researchers seeking to uncover the genetic and

environmental factors that lead to CL ⁄ P, the subphe-

notyping approach will likely enhance the power of

epidemiological and statistical mapping methods (68).

Consequently, efforts are currently underway to

incorporate subphenotype data into formal genetic

analyses of CL ⁄ P.

Significant face shape changes in the present study

were detected only in unaffected parents with a posi-

tive family history of the defect (i.e., they had at least

one addition biological relative with CL ⁄ P). Neverthe-

less, our results may also have important implications

for parents without a prior family history, particularly

those in simplex families. It is likely that clefting has a

genetic basis in some portion of these families. As

simplex families make up the vast majority of non-

syndromic cleft cases, identifying additional suscepti-

ble family members in this population is a priority. The

critical issue is whether we can identify simplex fami-

lies that �look more genetic,� as doing so would sub-

stantially increase the number of families eligible for

inclusion in genetic analyses. The subphenotyping

approach employed here may facilitate the identifica-

tion of simplex families with a higher risk of recurrence.

However, because any collection of simplex families is

likely to include a heterogeneous mix of clefting forms,

approaches like hierarchical cluster analysis will be

required to sort out families that naturally fall into

different etiological categories (30). Moreover, the facial

changes are likely to be more subtle in unaffected

family members from simplex families, requiring more

sensitive methods for quantifying face shape based on

whole surfaces (41) and much larger samples.
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Conclusions

The results of this study indicate that significant face

shape differences were present in the unaffected par-

ents of individuals with CL ⁄ P compared with matched

controls. The major predisposing features included

increased flattening of the facial profile resulting from a

combination of excess midface retrusion and mandib-

ular protrusion, decreased middle and upper facial

height, increased lower facial height, increased inter-

orbital width, and altered breadth of nasolabial struc-

tures. These shape differences were limited to parents

with a prior family history of the defect, were mani-

fested in a partly sex-specific manner, and were bio-

logically plausible as risk factors for clefting. Our results

suggest that certain facial features should be consid-

ered part of the phenotypic spectrum of clefting and

highlight the potential importance of subclinical phe-

notypic assessment for both recurrence estimation and

the study of CL ⁄ P etiology. Based on the present find-

ings, a strategy involving detailed evaluation of the

craniofacial phenotype coupled with large samples and

sophisticated multivariate analysis methods is recom-

mended for future family studies of CL ⁄ P.
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