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The protein profiles of Porphyromonas gingivalis (ATCC 33277 and W83) bound
to KB gingival epithelial cells were analyzed by SDS-PAGE and immunoblotting. Key words: Porphyromonas gingivalis;
We found that a 51-kDa component was formed in bacteria that adhered to the gingival epithelial cells
KB cells, whereas 26- to 29-kDa bands were less intensive, in contrast to the
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demonstrate the specificity of bacterial recognition of eukaryotic membrane
components. Accepted for publication April 20, 1999

It is well documented that Porphyro-
monas gingivalis plays an important
role in the initiation and progression of
periodontal diseases (25, 29). This or-
ganism expresses a vast array of viru-
lence factors including proteases, fim-
briae, hemagglutinins, membrane ves-
icles, lipopolysaccharide and a capsule,
each of which contributes to interac-
tions with cells (13). A crucial step in
successful colonization and, ultimately,
periodontal tissue destruction by mi-
crobial pathogens is the ability to
adhere to host surfaces. Bacterial outer
membrane molecules are certainly re-
quired for attachment to epithelial cells.
However, the structures involved in eu-
karyotic host recognition are not well
known. Fimbriae likely facilitate the
initial interaction between the bacteria
and the host (10, 12, 14, 19). Several
studies using anti-fimbria monoclonal
antibodies have shown that this surface
component is composed of polymerized
42-kDa fimbrillin subunits and minor
28-kDa polypeptidic subunits (5, 8).

Fimbriae have been reported to form
complexes with the HA-Ag2 hemagglu-
tining adhesin, and 43- and 49-kDa
polypeptides. Some structural homo-
logy between these molecules is strongly
suspected (6). Many other molecules,
like the family of cysteine proteinases
first referred to as trypsin-like enzymes,
may be involved in attachment to epi-
thelial cells (15, 16, 21). Pavloff et al.
(20) have shown that a cysteine protein-
ase, Arg-gingipain, is a polyprotein
containing adhesion molecules involved
in binding to erythrocytes. Various
forms of the enzyme are produced by
P. gingivalis (24). It has recently been
suggested that these enzymes are associ-
ated with hemagglutinins and fimbriae
(22, 27). These studies point out that a
number of complex molecules are in-
volved in the adherence of P. gingivalis
to host cells. Another study reported
that the expression of certain factors
was regulated by environment stress
factors (3). In this study, we looked at
whether the presence of epithelial cells

triggered the formation of protein com-
plexes by P. gingivalis when the bacteria
attached to the epithelial cell surface.
We used an in vitro system, which
allowed optimal bacterial proliferation
and prevented internalization into the
epithelial cells. Our findings showed
that P. gingivalis that bound to epi-
thelial cells specifically expressed pro-
teins different from those of freely
floating bacterial cells.

P. gingivalis (ATCC 33277 and W83)
was grown in anaerobic Todd-Hewitt
broth and, after a 1/10 dilution in the
same medium, was incubated for 18 h
until the bacteria reached the exponen-
tial phase. Just before the experiments,
the bacteria were harvested by centri-
fugation at 10,000¿g and washed in
phosphate-buffered saline (PBS). The
bacterial concentration was determined
by taking spectrophotometric readings
at 660 nm. Immunoblotting experi-
ments were carried out using purified
anti-fimbria and anti-HA-Ag2 mono-
clonal antibodies (8, 9), and with the
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Fig. 1. Electron micrograph of P. gingivalis attached to the KB cell surface. ATCC 33277 and W83 were incubated in Todd-Hewitt broth
under anaerobic conditions for 18 h at 37æC with glutaraldehyde-fixed KB cells in suspension (panels A and B respectively) or in monolayers
(panels C and D respectively). Magnification: ¿10,000 (A and B) and ¿4000 (C and D).

culture medium supernatants that pro-
duced them, referred to as unpurified
monoclonal antibodies.

The KB human gingival epithelial
cells (ATCC CCL-17) were grown to
confluence in RPMI1640 medium (Bio-
Whittaker) supplemented with fetal calf
serum (10%), -glutamine (2 mM) and
antibiotics (penicillin-streptomycin: 100
IU-100 mg/ml) in 75 cm2 flasks or 35-
mm dishes.

Cell monolayers were washed twice
with PBS then incubated with 5 ml of
0.02% EDTA for 5 min. Cell detach-
ment was stopped by adding 5 ml of
culture medium. The cells were then
collected by centrifugation, rinsed with
PBS and counted. Suspended KB cells
were fixed in PBS–2% glutaraldehyde
for 1 h at room temperature with gentle
agitation, and washed three times with
PBS before being incubated at 37æC
with bacteria (200 bacteria per cell)

under anaerobic conditions in Todd-
Hewitt broth. Microscopy experiments
were carried out on undetached cell
monolayers in 35-mm dishes. The
monolayers were fixed with 2% glutar-
aldehyde and washed three times with
PBS before the bacteria were added.
The mean cell number value in tripli-
cate unfixed dishes was used to calcu-
late the number of bacteria to be incu-
bated with the fixed KB cells.

After incubation, the cell suspensions
were centrifuged (1200 rpm for 5 min),
washed twice in PBS, and the pellets
containing the cell-bound bacteria were
recovered in 100 ml of PBS. The bacteria
remaining in the supernatants, as well
as those in the controls incubated with-
out KB cells, were washed in PBS by
centrifugation (10,000 rpm for 10 min)
and recovered in 1 ml of PBS. This
glutaraldehyde fixation procedure has
previously been shown not to affect in-

teractions between membrane receptors
and their ligands (4). In our model, P.
gingivalis strains were incubated under
anaerobic conditions to provide them
with optimal growth conditions.

Analysis of the interaction of P. gingivalis
with glutaraldehyde-fixed KB cells by
scanning electron microscopy (SEM)

After an 18-h incubation at 37æC with
bacteria, the glutaraldehyde-fixed KB
cells (gf-KB cells) were washed twice
with PBS, fixed in a 2.5% solution of
glutaraldehyde in cacodylate buffer (0.2
M, pH 7.2) and dehydrated in ethanol.
After critical point drying, the samples
were metallized with palladium-gold
and observed by SEM (JSM 6400).

No detectable differences in the cell
morphologies of bacteria bound to sus-
pended cells and bacteria bound to cells
in monolayers were observed (Fig. 1).
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Fig. 2. Silver-stained SDS-polyacrylamide gel of W83 lysates. Bacteria were incubated under
anaerobic conditions in Todd-Hewitt broth for 18 h at 37æC with or without gf-KB cells. Lane
1: molecular mass standards; lane 2: control gf-KB cells; lanes 3, 4: W83 bound to gf-KB
cells; lane 5, 6: W83 from gf-KB cell supernatant; lane 7: W83 controls. Assays were carried
out in duplicate. Molecular masses (kDa) of standards are shown on the left.

Sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS-PAGE) analysis
and immunoreactivity of bacteria lysates

After incubating P. gingivalis in the
presence or absence of suspended gf-
KB cells, the samples were solubilized
in dissociating buffer (v/v) containing
2% SDS and 5% b-mercaptoethanol,
and heated at 95æC for 5 min. The sol-
ubilized samples (5¿108 bacteria) were
electrophoresed in a 10% acrylamide gel
as described by Laemmli (17). After
electrophoresis, the polypeptides were
stained using the potassium permanga-
nate-silver nitrate procedure of Ansorge
(2) or transferred to a polyvinyl di-
fluoride membrane, (Immobilon-P,
Millipore) for immunoblotting accord-
ing to Towbin et al. (28). SDS-PAGE
protein profiles of W83 incubated for
18 h in Todd-Hewitt medium in the
presence of gf-KB cells differed signifi-
cantly from those of the W83 controls
(Fig. 2). The silver-stained protein pro-
files of gf-KB-bound P. gingivalis had
an additional band of MrΩ51,000 (Fig.
2, lanes 3, 4) compared to the profiles
of bacteria from cell supernatants and
the controls (Fig. 2, lanes 5, 6, 7). Fur-
thermore, the protein profiles of bac-
teria attached to epithelial cells did not
contain a 23-kDa band. The same re-
sults were obtained with strain ATCC
33277. After incubating P. gingivalis in
the presence or absence of KB cells for
65 h, the protein profiles were similar
and contained all bands (data not
shown).

To determine whether adhesin struc-
tures were involved in the distinctive
SDS-PAGE bands, we performed im-
munoblot assays using unpurified
monoclonal antibodies that recognized
epitopes corresponding to fimbrial sub-
units and hemagglutinin HA-Ag2 (5)
(Fig. 3). Once again, a more intense
band corresponding to a molecular
mass of 51 kDa was obtained with ex-
tracts of P. gingivalis that had attached
to gf-KB cells after an 18-h incubation,
whereas the 26- and 29-kDa bands in
control extracts were more intense. The
42-kDa polypeptide, which was iden-
tified by Chandad et al. (6) as corre-
sponding to fimbriae, was expressed by
bound bacteria at the same intensity as
that of the bacterial controls. This sug-
gested that fimbriae were probably not
overexpressed.

Effect of protease treatment of KB cells on
bacterial adhesin expression

To determine whether the differences in
bacterial adhesin expression required
that KB cells retain their plasma mem-
brane integrity, the cells were treated
with protease before the 18-h incuba-
tion with P. gingivalis ATCC 33277. KB
cells were digested with different con-
centrations of dispase (a nonspecific
protease, Sigma Chemical Co., St.
Louis, MO) in PBS for 1 h at 37æC be-
fore being fixed with PBS–2% glutar-
aldehyde. This treatment modified the
profile of the bacterial proteins recog-
nized by the anti-fimbria and anti-HA-

Fig. 3. Immunoblot of W83 lysates probed
with the hybridome medium containing anti-
fimbrial/anti-HA-Ag2 antibodies. The poly-
vinyl difluoride sheets (Millipore) were incu-
bated with biotin-conjugated anti-mouse
antibodies (Dako) (1/2000 in PBS containing
0.1% BSA, 0.1% gelatin and 0.05% Tween
20). After incubation with alkaline phospha-
tase-conjugated streptavidin (Dako), the
PVDF sheets were developed with NBT/
BCIP (nitro-blue tetrazolium/5-bromo-4-
chloro-3-indolyl phosphate) (Sigma Chemi-
cal Co.). Lane 1: W83 bound to gf-KB; lane
2: W83 controls. Assays were carried out in
duplicate. The numbers on the left are mol-
ecular masses in kilodaltons.

Ag2 monoclonal antibodies (Fig. 4). At
a dispase concentration of 100 mg/ml, a
slight shift in the 51-kDa band was
noted (Fig. 4, lane 2). At a concen-
tration of 200 mg/ml (Fig. 4, lane 3), the
51-kDa band became thinner and the
surrounding protein profile changed,
while at a concentration of 500 mg/ml
the protein profile was similar to that of
the bacterial controls (Fig. 4, lanes 4,
5). The induction of this component
was thus specific to the presence of a
eukaryotic substrate and not just due to
environmental stress. The nature of the
structure remains to be determined.
The molecular mass may mean it is re-
lated to the 49-kDa hemagglutinin HA-
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Fig. 4. Effect of protease treatment of KB
cells on bacterial adhesin expression. ATCC
33277 bound to gf-KB cells were subjected
to SDS-PAGE, immunoblotted, and probed
with hybridome medium containing anti-
fimbria/anti-HA-Ag2 antibodies. Lane 1: 0
mg/ml; lane 2: 100 mg/ml; lane 3: 200 mg/ml;
lane 4: 500 mg/ml, lane 5: bacteria controls.
The numbers on the left are molecular
masses in kilodaltons.

Ag2 described by Chandad et al. (6).
However, there is significant evidence
relating adherence, coaggregation and
protease activities to a single protein
complex (18, 22, 26). Bacterial pro-
teases have been shown at a genetic
level to be associated with hemagglutin-
ins (23). A 50-kDa arginine-specific cys-
teine protease, arg-gingipain, has been
found in the culture supernatant of P.
gingivalis (7), and a cysteine proteinase,
lys-gingipain, has recently been re-
ported to be composed of a single poly-
peptide with the same 51-kDa molecu-
lar mass as our component (1). It has
also been shown that strains of P. gingi-
valis with high levels of trypsin-like pro-
tease activity adhered better to human
erythrocytes and epithelial cells than
strains with lower levels of such activity
(11).

Our in vitro model demonstrated that
a specific 51-kDa bacterial component
was produced as early as the stage when
bacteria adhered to epithelial cells. We
are continuing to study the biochemical
and functional features of this protein
to better understand the first step in the
attachment of P. gingivalis to epithelial
cells.
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