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Complex Sampling: Implications for Data Analysis 
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Abstract 
Investigators in dental public health often use strategies other than simple 

random sampling to identify potential subjects; however, their statistical analyses 
do not always take into account the complex sampling mechanism. Often it is not 
clear whether a given strategy requires adjustment for stratification andor cluster 
sampling of observations. We propose that the need forsuch adjustment depends 
on the primary study objective. As a general rule, we recommend that if the study 
goal is to estimate the magnitude of either a population value of interest (e.g., 
prevalence), or an established exposure-outcome association, adjustment of 
variances to reflect complex sampling is essential because obtaining appropriate 
variance estimates is a priority. However, if the study goal is to establish the 
presence of an association, especially in a preliminary investigation of novel 
conditions or understudied populations, obtaining appropriate variance estimates 
may not be of primary importance; hence, adjustment of variances for complex 
sampling is not always required, but often is recommended. This paper describes 
several fypes of complex sampling designs, methods of adjusting for complex 
sampling strategies, examples ;llustrat;ng the effect of adjustment, and alternative 
approaches for analysis of complex samples. [J Public Health Dent 
1999,59( 1):52-59] 
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Researchers in dental public health, 
oral epidemiology, and dental health 
services research often select a sample 
of individuals from some population, 
calculate statistics from sample data, 
and generalize their findings to the 
population from which the sample 
was drawn or to other external popu- 
lations. The purpose of sampling is to 
estimate a parameter, or population 
value, from values obtained from a 
subset of that population. Sampling is 
undertaken to reduce the resources 
needed to obtain data about the popu- 
lation while maintaining reasonable 
confidence that the estimate approxi- 
mates the population value. 

Common sense dictates, and statis- 
tical methods require, that subjects 
comprising the sample be selected at 
random from the target population 
(the population about which we 
would like to make inferences) (1). 
This objective can be achieved in nu- 

merous ways. Because the strategy 
used to analyze data should mirror the 
strategy used to collect them, both the 
sampling mechanism and the primary 
study goal should influence the ana- 
lytic methods employed. 

The purpose of this paper is to de- 
scribe several common types of sam- 
ples, to review methods of accounting 
for complex sampling strategies, to 
present an example illustrating the ef- 
fect of such adjustment, and to recom- 
mend alternative analytic approaches 
for investigators who do not have the 
resources needed to perform such ad- 
justment. This review does not sum- 
marize these issues exhaustively, but 
may help dental public health practi- 
tioners and researchers better concep- 
tualize the manner in which data 
analyses hinge on study goals and 
sampling strategies. Readers need not 
have advanced statistical knowledge 
to understand this paper; however, 

some elementary statistical knowl- 
edge and vocabulary is assumed. 

Classification of Sampling 
Nonprobability Sampling. In non- 

probability sampling, individual se- 
lection is by nonrandom methods, and 
potential subjects do not have known 
selection probabilities because the 
number of individuals in the target 
population is unknown. One common 
example is a convenience, haphazard, 
or fortuitous sample (2), in which sub- 
jects are selected based not on chance 
but on ease of data acquisition. Other 
types of nonprobability samples in- 
clude purposive, expert choice, judg- 
ment, and quota samples (2). 

Results from nonprobability sam- 
ples may demonstrate a biologic or 
therapeutic principle by showing, for 
example, that a given intervention can 
be efficacious in preventing a disease 
within a group of volunteers. Yet it 
would be inappropriate to conclude 
that the intervention will be equally 
effective in the entire target popula- 
tion because the volunteers were not 
sampled randomly and thus cannot be 
considered representative of the target 
population. Because inferences drawn 
from data analyses are based on the 
observed sample only, nonprobability 
samples cannot generate estimates 
that apply to larger populations. Gen- 
eralizability can be claimed only 
through nonstatistical arguments, 
which may not be particularly con- 
vincing. For this reason, nonprobabil- 
ity samples will not be discussed fur- 
ther. 

Probability Sampling. Probability 
sampling implies that each individual 
in the target population has a known 
and nonzero probability of being se- 
lected into the sample (1,2). Two types 
of probability sampling include ran- 
dom sampling and survey sampling. 

In random sampling it is assumed 
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that the population is infinite and ab- 
stract. In contrast, survey sampling as- 
sumes that the population is finite and 
well defined, and though each element 
in the target population has a known 
and nonzero probability of selection, 
selection probabilities may differ 
among individuals. Survey sampling, 
rather than random sampling, will be 
the focus of this paper because so 
many research efforts in dental public 
health use survey sampling methods. 

In general, survey samples can be 
classified into one of four types. 

Equal Probability Selection Method 
Samples. In these samples, also called 
“EPSEM” or ”self-weighting” sam- 
ples, selection probabilities for all ele- 
ments in the target population are 
equal. Specifically, the probabilities 
are equal to the inverse of the number 
of elements in the sampling frame, i.e., 
the roster listing all elements in the 
target population. Depending on the 
study objectives, population elements 
can be communities, schools, people, 
teeth, or some other unit; most often, 
individuals are the population ele- 
ments listed in the sampling frame. 

A simple random sample (SnS) is a 
special type of EPSEM sample in 
which the population element is the 
only unit sampled-for example, indi- 
viduals are sampled, rather than 
towns, households, schools, or some 
other unit composed of more than one 
individual. An SRS was used to assess 
the prevalence of apical periodontitis 
among persons aged 30-39 years re- 
siding in Porto, Portugal (3). Here, a 
random drawing of 0.5 percent of the 
target population was carried out us- 
ing electorate lists as a sampling 
frame. 

Stratified Samples. Stratified sam- 
pling occurs when a target population 
is stratified, or divided, into two or 
more mutually exclusive and exhaus- 
tive subgroups, and samples are se- 
lected within each stratum. Ideally, 
elements within strata are relatively 
similar to each other compared with 
elements from other strata-in other 
words, stratified samples are most ef- 
ficient when the strata are internally 
homogeneous but externally hetero- 
geneous. Stratified samples require 
both the existence of a sampling frame 
and a record of each individual‘s 
value(s) for the stratification factor(s) 

so that each potential subject can be 
placed into a stratum prior to selection 
of subjects. A stratified sample may 
use any kind of probability sampling 
within strata. 

Some case-control studies (4) em- 
ploy stratified sampling. For example, 
in an investigation of factors related to 
loss of root canal treated teeth, Caplan 
and Weintraub (5) used a treatment 
database to identify a population of 
HMO patients who underwent endo- 
dontic therapy. Next, patients were 
separated into two mutually exclusive 
subgroups: those who lost the root ca- 
nal filled tooth within a specified time 
interval after treatment (cases) and 
those who did not (controls). Finally, 
SRSs were selected from each stratum, 
and patient- and tooth-level exposures 
were compared between the two 
groups. 

A stratified sample often is sought 
when good precision around an esti- 
mated parameter is desired but the 
number of potential subjects in one 
subgroup is relatively small, or when 
the study objective is to generate sepa- 
rate estimates for different subgroups. 
For example, with funding to perform 
200 clinical dental examinations and a 
goal of making separate estimates of 
the number of decayed, missing, or 
filled surfaces (DMFS) among Medi- 
caid recipients and nonrecipients in a 
population of 200 recipient and 800 
nonrecipient children, one can ran- 
domly select 100 recipient and 100 
nonrecipient children. Three aspects 
of this example should be emphasized: 

1. If ”Medicaid status” isnot already 
recorded in the sampling frame, one 
cannot separate the population into 
the two subgroups for sampling 
within strata. 

2. The total sample is called a strati- 
fied SRS because SRSs are selected 
from each stratum. 

3. The proportion of each stratum 
selected, or sampling fraction, for 
Medicaid recipients is 100/200=50 
percent, while that for nonrecipients is 
100/800=12.5 percent. The impact of 
the sampling fraction on parameter 
and variance estimates will be dis- 
cussed later. 

Cluster Samples. In cluster samples, 
groups of population elements are se- 
lected, rather than single population 
elements, with selected groups shar- 

1 

ing some common feature@). Group- 
ing is usually based on region, school, 
or work place, with the goal of reduc- 
ing travel and other costs associated 
with data collection. For example, to 
examine a cluster sample of school- 
children, one first can select a sample 
of schools (clusters) from a list of all 
schools in the sampling frame, then 
examine a sample of children within 
each selected school. Here, children 
are ”clustered” within schools, since 
schools were sampled and children 
were examined solely due to their at- 
tending selected schools. Three points 
are worth noting: 

1. This sample of schoolchildren sat- 
isfies requirements for probability 
sampling, provided that schools were 
selected with a known, nonzero prob- 
ability from the entire population of 
schools within the region of interest. 

2. Cluster samples can include more 
than one stage, or level, of sampling. 
In the above example, if 10 percent of 
each school’s students were sampled 
and examined rather than all children 
attending the selected schools being 
examined, the sample would be called 
a two-stage cluster sample as opposed 
to a one-stage cluster sample. SRSs are 
one-stage samples with no clustering. 

3. A common example in dental re- 
search where the individual repre- 
sents a cluster involves measurement 
and analysis of multiple sites within a 
person. Examples are plentiful, espe- 
cially in periodontal studies involving 
assessment of periodontal probing 
depth or clinical attachment level, 
where as many as six sites per tooth are 
analyzed (6). 

As a general rule, any sample for 
which multiple observations per indi- 
vidual are assessed and analyzed 
should be considered a cluster sample 
because the assumption of inde- 
pendence among observations is vio- 
lated. Satisfaction of the independence 
assumption means that the value of 
any observation is in no way affected 
by, or related to, measurements of any 
other observation. Conventional wis- 
dom in periodontal research holds 
that clinical attachment level at sites 
within a mouth are correlated due to 
person-level factors that affect peri- 
odontal disease, such as host resis- 
tance, genetics, oral hygiene habits, 
and diet (7,8). In the school example, 

‘In the US, Medicaid is a program partially funded by the federal government and administered by the states that provides health insurance for 
certain individuals in need of assistance, primarily those with low incomes. 
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DMFS among childrenattending a sin- 
gle school may be correlated due to 
school-level factors that affect DMFS, 
such as drinking water fluoride con- 
centration or schoolwide fluoride 
mouthrinsing programs. 

Strat8ed Cluster Samples. As the 
name implies, these samples are a 
combination of startified samples and 
cluster samples. The North Carolina 
1986-87 School Oral Health Survey (9) 
represents a stratified one-stage clus- 
ter sample in which 16 mutually exclu- 
sive strata were identified based on 
cross-classifying four school system 
geographic regions with two school 
urbanization categories and two 
school racial makeup designations (4 
x 2 x 2=16). After teachers within each 
stratum were selected, all students in 
selected teachers’ classrooms were 
asked to participate. Here, students 
were clustered within teachers who 
were stratified by their schools’ geo- 
graphic region, urbanization, and ra- 
cial makeup. 

Many in the dental public health 
community are familiar with the 
WHO ”pathfinder” survey methodol- 
ogy (10). Briefly, this technique in- 
volves sampling a specified number of 
individuals in certain age groups, geo- 
graphic locations, or residence types 
for the purposes of program planning. 
The pathfinder methodology also has 
been employed to help procure re- 
sources, increase visibility of dental 
public health programs, and educate 
the public regarding the benefits of 
good oral health (11). According to the 
WHO, the pathfinder methodology is 
“a practical, economic survey sam- 
pling methodology [that uses] a strati- 
fied cluster sampling technique, 
which aims to include the most impor- 
tant population subgroups likely to 
have differing disease levels” (10). 

W e  this method maybe useful for 
other purposes, it should not be used 
to estimate prevalence or incidence of 
disease in populations unless the de- 
nominator (the total number of people 
in the population represented by the 
sample) is known for each cluster and 
stratum. In the context of the present 
paper, WHOs use of the term ”strati- 
fied cluster sampling” is misleading, 
because it implies that subjects are se- 
lected as a probability sample and thus 
have a known and nonzero prob- 
ability of selection. T h s  generally is 
not true in studies that use the path- 
finder method. Though subjects are 

stratified by age, geographic location, 
or residence status and might be ex- 
amined in clusters such as schools or 
factories, selection into the sample 
generally is a purposive or judgment 
sample based on convenience, and ex- 
amined subjects may not be repre- 
sentative of any larger group. Thus, 
pathfinder samples should be consid- 
ered nonprobability samples that 
should not be used to estimate popu- 
lation values such as prevalence or in- 
cidence of disease. 

Hereafter, the term complex sample 
will refer to all probability survey sam- 
ple types mentioned except SBs .  

Variance Estimation for Complex 
Samples: Issues 

Random Variation, Standard Er- 
ror, and Confidence Intervals. In an 
EPSEM/SRS, sample statistics should 
approximate population parameters 
because sampled individuals were 
chosen a t  random with an equal prob- 
ability of being selected. For example, 
a 10 percent SRS from the population 
of 200 Medicaid recipients and 800 
nonrecipients mentioned before likely 
would contain about 20 recipient and 
80 nonrecipient children-the same 
percentage of each subgroup found in 
the population. 

The population value of 20 percent 
Medicaid recipients does not fluctuate 
regardless of the population members 
sampled. In contrast, the estimate ob- 
tained from the sample is expected to 
vary due to random variation, a term 
reflecting the fact that different sam- 
ples of identical sizes from a popula- 
tion would include different children 
and thus could produce different esti- 
mates. By chance, one could draw 10 
percent SRSs consisting of 100 Medi- 
caid recipients, 100 nonrecipients, or 
any combination of 100 children; how- 
ever, ”on average” the sample would 
contain 20 percent Medicaid recipi- 
ents. The extent of random variation 
around the 20 percent parameter esti- 
mate is expressed mathematically by 
the variance, which can be viewed as 
the amount one could expect the esti- 
mate to vary if a sample of that size 
were repeatedly selected at random 
from the target population. The stand- 
ard error, a frequently reported meas- 
ure of random variation, is calculated 
as the square root of the variance di- 
vided by the square root of the number 
of elements sampled. 

__ .-___ _- - 

Sample data are used to generate a 
parameter estimate and its associated 
standard error. These two numbers 
then can be used to calculate a confi- 
dence interval (CI), with greater stand- 
ard errors leading to wider CIS. Usu- 
ally, CIS are expressed as 95 percent 
CIS, where 95 percent implies that if 
100 samples of size n were drawn from 
that population, CIS generated from 95 
of those samples would contain the 
population value. Practically speak- 
ing, the 95 percent CI can be viewed as  
a range in which it is reasonably likely 
that the true population parameter 
lies. In the population containing 20 
percent Medicaid recipients, 95 of 
every 100 samples drawn would gen- 
erate 95 percent CIS containing the 
value 20 percent. 

Weights. In the previous example of 
a stratified SRS, 100 of 200 Medicaid 
recipients and 100 of 800 nonrecipients 
were selected at random, resulting in 
sampling fractions of 50 percent and 
12.5 percent for the two groups, re- 
spectively. Sampling fractions affect 
parameter and variance estimates be- 
cause the weight of each sampled in- 
dividual (i.e., the number of individu- 
als in that subgroup represented by 
that individual) is equal to the inverse 
of his or her subgroup’s probability of 
selection-here just the sampling frac- 
tion. With our stratified SRS example, 
the statistical likelihood of selection of 
50 percent for the Medicaid recipient 
subgroup results in a weight of 
1.0/0.5=2.0 for each sampled recipi- 
ent, while the statistical likelihood of 
selection of 12.5 percent for the nonre- 
cipient subgroup results in a weight of 
1.0/0.125=8.0 for each sampled nonre- 
cipient. 

Weights are important for two rea- 
sons. First, if one wants to estimate a 
parameter from a sample composed of 
individuals with different weights, 
one must take into account the relative 
contribution of each observa tion to ob- 
tain unbiased parameter estimates for 
the total population. Failure to take 
weights into account would imply 
equal importance of all observations, 
which would lead to biased parameter 
estimates if, on average, values from 
observations with smaller weights dif- 
fered systematically from those ob- 
tained from individuals with larger 
weights. 

Second, in stratified SRSs with 
strata of equal sizes, the greater the 
sampling fraction within a stratum, 
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the narrower the CI around that stra- 
tum-specific estimate because a 
greater proportion of individuals are 
sampled and thus available to "ten- 
ter” the subgroup’s estimate near its 
population value. One easy way to 
conceptualize this point is to imagine 
a sample in which all but one individ- 
ual in the population is sam- 
pled-only that person would be 
available to ”deflect” the estimate 
from the population value. However, 
we should emphasize that sampling 
fraction is only one consideration in 
estimating random variation, and that 
sample size also is important. 

Similarity of Observations Within 
Clusters. Suppose a study aimed to 
compare mean DMFS between Medi- 
caid recipients and nonrecipients from 
the previously mentioned population 
of 1,000 children, but had only enough 
resources to examine 100 subjects. Fur- 
ther, assume that the 1,000 children 
were spread equally across 20 schools 
in the region of interest, with approxi- 
mately 50 children attending each 
school. A 10 percent SRS could be gen- 
erated; however, examining members 
of this sample might create logistical 
problems. One would need to estab- 
lish contacts with multiple administra- 
tors, obtain a list of all 1,000 children, 
travel to many different schools, and 
set up and put away portable exami- 
nation equipment numerous times. In- 
stead, cluster sampling could be em- 
ployed more conveniently by choos- 
ing five schools a t  random, then 
selecting at random two classrooms in 
each school, and examining 10 chil- 
dren selected at random from each 
classroom. Here, children would be 
clustered within classrooms and class- 
rooms clustered within schools. 

Both the 10 percent SRS and the 
three-stage cluster sample result in ex- 
amination of 100 children; however, 
observations collected from the cluster 
sample would involve not only vari- 
ation among individuals, as in the SRS, 
but also variation within and among 
clusters. Compared to the variationex- 
pected from an SRS, there generally is 
more variation from a cluster sample 
of the same size. This may seem coun- 
terintuitive, because there probably is 
less variation within clusters due to 
cluster members being relatively more 
homogeneous than members of an 
SRS. However, this decreased in- 
tracluster variation creates an increase 
in variation across clusters, resulting 

in cluster samples’ generally having 
more variation than identically sized 
SRSS. 

In the above example, variation in 
DMFS within a cluster might be less 
than would be expected from an SRS 
of the same size because there might 
be cluster-level factors related to 
DMFS that affect children in the clus- 
ter to a similar degree (2). For example, 
schools within one school system may 
share a common water supply and 
thus a common level of fluoridation. If 
so, all classrooms within that school 
system would receive water with simi- 
lar fluoride concentrations, compared 
to the greater variation in fluoride con- 
centration across school systems. 

Statistical analyses that ignore com- 
plex sampling designs treat the data as 
if they were obtained from an SRS; 
thus, variation within and across clus- 
ters goes unrecognized, generally re- 
sulting in underestimation of the true 
variance. An erroneously small vari- 
ance estimate, reflected by errone- 
ously small standard errors, would 
produce narrower CIS and smaller P- 
values than would have been ob- 
served had clustering been accounted 
for, which would result in an increased 
likelihood of claiming a difference be- 
tween comparison groups when there 
is none. 

The design effect, or deff (2), is the 
extent to which the variance generated 
from a complex sample differs from 
that which would have been obtained 
from an SRS of the same size. Greater 
within-cluster (or within-stratum) ho- 
mogeneity and more elements per 
cluster can increase deff substantially 
(2,12). For example, if deff=3, analysis 
as an SRS underestimates the true 
variance by one-third, or the recipro- 
cal of deff. Such underestimation of 
variance could greatly affect CIS and 
hypothesis test values. As a rule, if 
deff>l, as usually happens with com- 
plex designs, analyzing data without 
taking complex sampling into account 
will underestimate the true variance. 

Variance Estimation for Complex 
Samples: Analytic Strategies 

General applications in most statis- 
tical analysis programs (e.g., SAS ver- 
sion 6.12, SPSS, BMDP, S-PLUS, 
Statview, Statistica) assume observa- 
tions are from an SRS. Although many 
packages allow for weights, which 
will provide proper point estimates, 
including means, proportions, and re- 

gression coefficients, they will not give 
proper variance estimates for complex 
samples, resulting in inappropriate 
CIS and hypothesis test values. 

To produce appropriate variance 
estimates from data generated using 
complex samples, one must either use 
analytic strategies that account for the 
correlated (clustered) data structure or 
modify the data set so that the inde- 
pendence assumption is satisfied. 
What approaches can be employed to 
achieve these goals? 

Use a software package that ac- 
counts for complex sampling designs. 
Some packages use Taylor series 
linearizations to calculate proper vari- 
ances, while others use simulation 
methods; both approaches generally 
are acceptable. Several recent reviews 
of PC survey sampling analysis soft- 
ware are available (13-15). Some infor- 
mation already is outdated, but most 
of the content should help in software 
selection. Software reviewed (13-15) 
includes: CENVAR, CLUSTERS, EPI- 
INFO, PC CARP, Stata, SUDAAN, 
VPLX, and WesVarPC. Though some 
packages cost up to $12,000, others 

CSAMPLE procedure, VPLX, and 
WesVarPC version 2.12) are free or 
inexpensive, so costly software is no 
longer an excuse for not performing 
appropriate analyses. SAS version 7.0 
has beta test versions of survey data 
analysis procedures (SURVEYSE- 
LECT, SURVEYMEANS, and SUR- 
VEYREG) (16,17). Generally, free 
packages provide fewer features and 
less customer support than other 
packages. Programs also can be writ- 
ten in spreadsheets or in software 
packages, like the SAS macro in Wang 
(18). 

Regression can be performed to 
adjust for observation-level covariates 
and residuals can be aggregated at the 
cluster level, much like in group ran- 
domized trials (19). The main advan- 
tage of this approach is that any statis- 
tical software can be used. The pri- 
mary disadvantage is that the analysis 
is more complex and inefficient. 

Occasionally, deff for similar stud- 
ies may already have been published. 
For example, Davies et al. (20) re- 
ported deffs ranging from 2-3 in a 
study of periodontal attachment loss 
in a stratified cluster sample of elderly 
North Carolinians. If deff can be ap- 
proximated from studies with compa- 
rable sampling designs, measure- 

(CENVAR, CLUSTERS, EPI-INFO’S 
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ments, and populations, one first can 
analyze the complex sample as though 
i t  were an SRS to obtain variances, 
then estimate the true variance by 
multiplying the estimated deff by the 
variance obtained from the SRS analy- 
sis. For example, suppose that the 
mean DMFS and standard error esti- 
mates obtained from a complex sam- 
ple of schoolchildren were 10.0 and 
1.5, respectively. Analysis as an SRS 
would provide an incorrect 95 percent 
CI of 10.0+(1.96*1.5)=[7.06, 12.941 (21). 
If a published study of a comparable 
population used a similar complex 
sample and reported that deff=3, the 
adjusted 95 percent CI would be 
1 O.O+( 1.96*sqrt(3*( 1 .5)2))= [4.9 1, 15.091. 
The main advantage of this approach 
is that specialized survey sampling 
software is not required. The main dis- 
advantages are that a range of deffs 
might be provided in published stud- 
ies, and any particular deff used 
would need to be justified. Further, it 
still would be necessary to compute 
proper point estimates (e.g., preva- 
lences, means) using correct sampling 
weights. Methodologic studies ad- 
dressing estimation of deff are avail- 
able elsewhere (22-24). 

If investigators produce statisti- 
cally significant results using vari- 
ances calculated as if from an SRS, they 
could propose a range of deff values 
that, if applied to the SRS variance, still 
would produce statistically significant 
results. Again, the main advantage of 
this approach is that specialized sur- 
vey sampling software is not required, 
and the main disadvantages relate to 
justification of the specified range of 
deffs. While this approach provides a 
crude method to adjust variances, it 
should be reemphasized that sam- 
pling weights must be used to obtain 
correct point estimates from complex 
samples, regardless of software used. 

Variance Estimation for Complex 
Samples: Example 

In this section we demonstrate the 
potential influence of analytic strategy 
on variance estimates. Data sets used 
here were selected for illustrative pur- 
poses only; readers should not infer 
that differences of this magnitude 
would be seen in similar analyses of 
other data sets. Such differences 
would depend on the deff for those 
studies. 

The example uses data from both 
phases of the third National Health 

and Nutrition Examination Survey 
(NHANES 111), a cross-sectional study 
of the United States population aged 2 
months and older conducted between 
1988-94. Full documentation of the 
survey has been provided elsewhere 
(25) and descriptive findings on oral 
health status from the first phase of the 
study have been reported (26). 

Briefly, NHANES 111 used a multi- 
stage, stratified cluster sampling de- 
sign to assess health characteristics of 
the US civilian, noninstitutionalized 
population (the target population for 
this survey). The design oversampled 
young children, persons at least 65 
;ears old, African-Americans, and 
Mexican-Americans to provide suffi- 
cient numbers of subjects for analysis 
of these relatively small population 
subgroups.  Hence, unit record 
weights are provided that adjust for 
different probabilities of subject selec- 
tion and rates of nonresponse. The 
public-release data set contains vari- 
ables for the sample design, including 
the stratum, primary sampling unit, 
and sampling weight for each subject. 

Interviews were conducted in re- 
spondents’ homes and standardized 
oral examinations were conducted at 
mobile examination centers. Dental 
caries experience was recorded for all 
tooth surfaces except third molars, 
and a separate assessment was made 
for the presence of fissure sealants 
(27). 

For this example, we computed pa- 
rameter estimates for two outcomes 
among children aged 5-17 years: 
mean DMFS and percent of children 
with one or more fissure sealants. Es- 
timates were compared among socio- 
economic subgroups as categorized by 
the income:poverty ratio, which repre- 
sents the midpoint of the family in- 
come category recorded in the house- 
hold interview divided by the poverty 
threshold for the subject’s family in the 
year of the interview. 

Documenta tion accompanying the 
public-release data sets cautions 
against conducting analyses that do 
not account for the complex sampling 
design, and methods are described for 
conducting appropriate analyses us- 
ing SUDAAN software. However, in 
order to demonstrate some of the prin- 
ciples described above, we examined 
the two outcomes using three different 
analytic methods: 

SAS (Version 6.12 for Windows 95) 
Unweighted Calculation. This method 

ignored the sampling design and sam- 
pling weights, thus treating the 
NHANES 111 sample as an SRS. This 
method has the effect of assigning 
each participant a weight of one, and 
thus is expected to produce parameter 
and variance estimates that cannot be 
generalized to the target population. 

SAS (Version 6.12 for Windows 95) 
Weighted Calculation. This method 
used “normalized weights“ for each 
observation that were obtained by di- 
viding the weight for each observation 
by the mean weight of all observa- 
tions. This has the effect of maintain- 
ing the sample size (hence, degrees of 
freedom) represented by the number 
of people examined, while providing 
proportions within comparison sub- 
groups that mirror those in the target 
population. This method is expected 
to produce parameter estimates that 
can be generalized to the target popu- 
lation. However, because most SAS 
procedures do not account for stratifi- 
cation and clustering-including the 
MEANS, CLM, FREQ, and LCXXSTIC 
procedures  used in this analy- 
sis-variance estimates cannotbe gen- 
eralized to the target population. 

SUDAAN (Version 7.50 for Windows 
95) Weighfed Calculation. This method 
adjusts both for sampling design and 
sampling weights, so it provides 
weighted sample sizes that are repre- 
sentative of the target population. 
Both parameter and variance esti- 
mates can be generalized to the target 
population. This method is consistent 
with the analysis guidelines provided 
with the public-release NHANES I11 
data set. 

Findings from the three analytic 
methods are presented in Table 1. Al- 
though the analyses revealed similar 
trends, including lower mean DMFS 
values and higher proportions of peo- 
ple with sealants in groups with 
higher income:poverty ratios, several 
important distinctions exist. For the 
SAS unweighted calculation, the val- 
ues in the weighted sample size col- 
umn are equivalent to the number of 
subjects examined, incorrectly imply- 
ing that within the US population 
there are more than twice as many 
children in the lowest income:poverty 
category as in each of the two highest 
categories of socioeconomic status. In 
contrast, weighted sample sizes from 
the two weighted methods indicate a 
population that is fairly evenly distrib- 
uted among the four income:poverty 
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TABLE 1 
Unweighted and Weighted Calculations of Dental Canes Experience (DMFS) and Frequency of Fissure Sealants 

in NHANES I11 Among Persons Aged 5-17 Years with One or More Permanent Teeth 
- .. ~~ ..... .. . -. - . . -.. 

Caries Experience (DMFS) Presence of I+ Sealants 

Mean (SE) 95% CI % of Persons (SE) Odds Ratio 95% CI 
_ _  _ _ ~  ___ - - -. . __ ~ 

- 
~ ~ 

1ncome:Poverty Subjects Weighted 
Ratio Examined Sample Size 

SAS unweighted calculations 
- ~ . . .. . 

<1 .O (low SES) 2,203 2,203 
1.0-<2.0 1,507 1,507 
2.0-<3.0 955 955 
3.0 or more 862 862 

P-value 
All persons 5,527 5,527 

4 . 0  (low SES) 2,203 1,326 
1.042.0 1,507 1,351 
2.0-<3.0 955 1,286 
3.0 or more 862 1,564 

P-value 
All persons 5,527 5,527 

4 . 0  (low SES) 2,203 10,113,839 
1.0-<2.0 1,507 10,306,702 
2.0-<3.0 955 9,812,149 
3.0 or more 862 11,935,149 

P-value 
All persons 5,527 42,167,841 

(high SES) 

SAS normalized weighted calculations 

(high SES) 

SUDAAN weighted calculations 

(high SES) 

2.32 (0.10) 
2.40 (0.13) 
2.26 (0.15) 
1.96 (0.14) 

.15 
2.28 (0.06) 

2.66 (0.13) 
2.78 (0.14) 
2.68 (0.15) 
2.06 (0.10) 

<.01 
2.52 (0.06) 

2.66 (0.23) 
2.78 (0.33) 
2.68 (0.36) 
2.06 (0.20) 

.09 
2.52 (0.18) 

2.12-2.52 
2.15-2.65 
1.97-2.55 
1.69-2.23 

2.16-2.40 

2.41-2.91 
2.51-3.05 
2.39-2.97 
1.86-2.26 

2.40-2.64 

2.21-3.11 
2.1.3-3.43 
1.97-3.39 
1.67-2.45 

2.17-2.87 

7.8 (0.6) ref 
9.0 (0.7) 1.2 0.9-1.5 

17.5 (1.2) 2.5 2.0-3.1 
28.3 (1.5) 4.7 3.8-5.8 

<.01 
13.0 (0.5) 

11.5 (0.9) 
12.7 (0.9) 
23.5 (1.2) 
34.0 (1.2) 

<.01 
21.0 (0.5) 

11.5 (2.3) 
12.7 (2.2) 
23.5 (3.5) 
34.0 (2.4) 

<.01 
21.0 (2.0) 

ref 
1.1 
2.4 
4.0 

ref 
1.1 
2.4 
4.0 

0.9-1.4 
1.9-2.9 
3.3-4.9 

0.6-2.0 
1.4-3.9 
2.7-5.9 

categories. Finally, the SAS un- 
weighted computation underesti- 
mates both mean DMFS and percent 
of children with fissure sealants, the 
latter by approximately one-third (13 
percent of all persons aged 5-17 years 
have one or more sealants according to 
the unweighted analysis, compared 
with 21 percent as calculated in the 
weighted analyses). 

As expected, SAS and SUDAAN 
weighted analyses provided similar 
point estimates but different standard 
errors, CIS, and P-values. SAS 
weighted standard errors were similar 
in magnitude to SAS unweighted 
standard errors, but were substan- 
tially smaller than SUDAAN 
weighted standard errors. Thus, for 
mean DMFS, SAS weighted standard 
errors suggested a statistically signifi- 
cant difference among income:pov- 
erty groups, whereas the SUDAAN 
weighted calculation showed a trend 
that was not significant (P=.O9). 

n o u g h  not s h o w  in Table 1, the 

larger s tandard errors for the 
SUDAAN weighted analysis reflect 
moderately large deffs for these esti- 
mates. For example, deff for mean 
DMFS among all persons was 8.1, im- 
plying that the SUDAAN variance for 
mean DMFS was more than eight 
times that of the SAS unweighted vari- 
ance. For the statistics reported in Ta- 
ble 1, deffs ranged from 2.3 to 12.8. 

Finally, additional results obtained 
using survey data analysis procedures 
in SAS 7.0 and a macro available from 
the authors (28) were almost identical 
to those obtained in SUDAAN, except 
that CIS around parameter estimates 
were slightly wider, and global hy- 
pothesis test values for differences in 
odds ratios were not obtained. 

Impact of Study Objective 
on Analytic Method 
Recommendations 

It is not clear whether all studies that 
employ complex samplmg necessarily 
require adjustment of variances. Some 

investigators may have philosophical 
reasons for always adjusting for com- 
plex sampling, while others base their 
recommendation on the amount of 
"inefficiency" produced by account- 
ing for complex sampling when it may 
not be useful. Specifically, Korn and 
Graubard (29) report that such ineffi- 
ciency is related to the number of pri- 
mary sampling units minus the 
number of strata, and that depending 
on the degree of inefficiency observed, 
the data analyst either should use clus- 
tering and weighting, or control for the 
covariates used to create the weights. 
Models should contain all of the im- 
portant adjustment variables and the 
form of those variables must be cor- 
rectly specified, e.g., linear and quad- 
ratic components of age should be in- 
cluded if that combination describes 
the true relationship (30). 

We propose that the decision to ad- 
just for complex sampling should 
hinge primarily on the study's main 
objective, as follows: 
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Adjustment of variances to reflect corn- 
plex sampling is essential when: 

The study goal is to estimate the 
magnitude of a population value such 
as prevalence or incidence of a given 
condition. As stated previously, infer- 
ences to populations are based on 
point estimates and CIS generated 
from sample data. In public health 
practice, parameter estimates are used 
a s  a basis for comparison of charac- 
teristics among populations, and also 
for policy making, budget justifica- 
tion, and resource allocation. CIS 
around parameter estimates take on 
added importance in this setting be- 
cause they describe a range in which 
one would expect the true population 
value to fall. If CIS are erroneously 
small, as would likely occur with com- 
plex samples analyzed with no correc- 
tion for clustering and/or stratifica- 
tion, expectations for budgeting and 
resources would be based on too nar- 
row a range of values, which ulti- 
mately could have adverse impact on 
the delivery of public health care. 
Thus, when one wishes to generalize 
estimates obtained from a sample to a 
larger population, it is imperative that 
variance estimates, and thus CIS, be as 
accurate as possible. 

The research objective is to esti- 
mate the magnitude of an exposure- 
outcome association in a hypothesis- 
testing study. These studies usually 
are conducted when there is previous 
evidence that a relationship exists, but 
the strength of the association has not 
been agreed upon. When such studies 
employ multivariable regression to 
obtain explanatory models, decisions 
to include or exclude variables from 
models often are based on the extent 
to which factors confound the associa- 
tion of interest or affect the precision 
of that estimate. In generating predic- 
tion models for a given outcome, deci- 
sions to include variables often hinge 
on P-values and/or estimates of sensi- 
tivity and specificity, which also are 
affected by estimates of variance. 
Thus, if investigators want to assess 
the magnitude of already established 
associations through the development 
of either explanatory or predictive re- 
gression models, appropriate esti- 
mates of variance are essential because 
they impact the decision-making proc- 
ess regarding factors to be included in 
and excluded from models. [Note: the 
above sentiment is that of the present 
authors and does not necessarily rep- 

resent a consensus opinion. Discus- 
sion of this issue and presentation of 
comparative views can be found else- 
where (31,32).] 

Analysis is undertaken to estimate 
the presence of an exposure-outcome 
association in a sample that had been 
selected using stratification on some 
other variable (i.e., neither the expo- 
sure nor the outcome). For example, in 
Table 1, the association between socio- 
economic status and presence of fis- 
sure sealants requires adjustment for 
complex sampling because subjects 
were not sampled on the basis of their 
income:poverty ratio or their fissure 
sealant status. Without accounting for 
complex sampling, biased estimates 
could result. This type of bias is dis- 
cussed in detail elsewhere (4). 

Multiple observationsper popula- 
tion element are analyzed, such as in 
studies of periodontal disease that 
analyze multiple sites within indi- 
viduals. It should be noted that adjust- 
ment is required only if analysis is con- 
ducted for several observations within 
a cluster, as often is done at the sur- 
face-, site-, or tooth-level in periodon- 
tal or caries studies. If multiple obser- 
vations are recorded, but the analysis 
is performed at the cluster level (e.g., 
if site-level data are aggregated into a 
"mean clinical attachment level" per 
randomly sampled individual), ad- 
justment of variances is not needed. 

Adjustment of variances to reflect corn- 
plex sampling is recommended, but not 
required, when: 

The study goal is to determine the 
presence of an exposure-outcome as- 
sociation by examining differences in 
exposure across subgroups stratified 
by outcome (or differences in outcome 
across subgroups stratified by expo- 
sure). For example, Selwitz et al. (33) 
used a cross-sectional design to de- 
scribe caries and fluorosis levels in 
three towns with different fluoride 
concentrations in their drinking water. 
The purpose of this type of study is not 
to estimate the magnitude of an expo- 
sure-disease association, but instead 
to demonstrate "in principle" that an 
association exists (i.e., to determine 
the presence of an association). 

Studies of this type likely do not 
affect the practice of dental public 
health to a great extent. Most often 
their objective is to identdy potential 
risk factors, predictors, or causative 
agents for disease, which in turn helps 
to improve our understanding of bio- 

logic processes and generate new hy- 
potheses for future testing rather than 
build a foundation on which to make 
policy decisions or population com- 
parisons. The impact of erroneous CIS 
on the practice of dental public health 
likely is minor, so adjustment of vari- 
ances for complex sampling is not con- 
sidered a requirement; however, it still 
is recommended on a phdosophical 
basis. Further, valid point estimates 
for any association can be obtained 
only by using weights that reflect the 
selection probability for each sampled 
individual. 

Adjustment of variances to reflect corn- 
plex sampling is not required when: 

The primary goal is to report new 
information about unique population 
subgroups or novel conditions. Re- 
ports of this type are valuable because 
they elicit information about pre- 
viously unstudied populations (34) or 
new diseases (35). Sophisticated 
analyses are not required because 
such reports, rather than being consid- 
ered epidemiologic studies, can in- 
stead be viewed as "case studies" in 
which the "case" is a population sub- 
group rather than a person. In these 
situations, investigators can give the 
range of deff values that still provide 
significance. 

The sample is a nonprobability 
sample, such as a group of volunteers 
or dental clinic patients (36). In these 
situations, or when sampling design is 
not known, generalizations from ob- 
tained estimates should not be made 
because there is no sampling frame or 
denominator for the target popula- 
tion. 

The sample is an SRS. Because 
SRSs are not complex samples, this 
recommendation applies regardless of 
the study objective. 

We strongly encourage researchers 
proposing investigations in dental 
public health, oral epidemiology, and 
dental health services research to con- 
sider what resources will be available 
at the time statistical analyses are con- 
ducted (because unavailable software 
or personnel at the time of analysis 
could influence the proposed Sam- 
pling strategy), and to include an ade- 
quate budget for appropriate analy- 
ses. In addition, we recommend that 
they employ simple random sampling 
with one observation per person if 
they cannot analyze the data account- 
ing for complex sampling because this 
method offers the greatest flexibility 
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with respect to analytic software and 
future secondary analyses. However, 
we recognize that real-life logistics 
and funding restrictions often pre- 
clude the use of this strategy. If com- 
plex sampling is to be used, investiga- 
tors should use a predicted deff, or 
range of deffs, as a multiplicative fac- 
tor for sample size calculations using 
SRS formulas. 

In preparing manuscripts for sub- 
mission, investigators should describe 
their sampling strategy fully so that 
reviewers and other readers can 
evaluate whether the statistical analy- 
ses used were appropriate. If cluster- 
ing and/or stratification were em- 
ployed, but adjustment for complex 
sampling was not carried out, investi- 
gators' reasons for not doing so should 
be stated. In addition, they should 
comment on the change in precision 
around estimates that might be ex- 
pected if such adjustment were under- 
taken, drawing on findings from com- 
parable studies that have considered 
sampling design effects. Finally, 
authors should describe the popula- 
tions to which they feel their study 
findings can be generalized. 
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