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Abstract

Casein phosphopeptides (CPP) stabilize amorphous calcium phosphate (ACP) and may be used to localize ACP
in dental plaque, maintaining a state of supersaturation with respect to tooth enamel, reducing demineralization and

enhancing remineralization. The aim here was to investigate these e�ects by measuring the e�ect of CPP±ACP on
calcium di�usion in plaque. Using Dibdin's e�usion system, calcium di�usion was measured in streptococcal model
plaques. This demonstrated that by providing a large number of possible binding sites for calcium, 0.1% CPP±ACP

reduces the calcium di�usion coe�cient by about 65% at pH 7 and 35% at pH 5. Hence, CPP±ACP binds well to
plaque, providing a large calcium reservoir within the plaque and slowing di�usion of free calcium. This is likely to
restrict mineral loss during a cariogenic episode and provide a potential source of calcium for subsequent

remineralization. Overall, once in place, CPP±ACP will restrict the caries process. 7 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The use of topical ¯uoride has produced a large

decrease in the incidence of dental caries, but there
still remains a small portion of the population that

is refractory to the use of oral hygeine products

and there is evidence that ¯uoride alone cannot
completely eradicate the disease. Milk and milk pro-

ducts such as cheese have been shown to have
anticariogenic properties in human and animal

models (Reynolds and Johnson, 1981; Rosen et al.,

1984; FitzGerald, 1998). It has been suggested that

the mechanism of this action is due to a direct

chemical e�ect from a component of the cheese

(Krobicka et al., 1987), or, more speci®cally, due to

the phosphoprotein casein and calcium phosphate

components (Harper et al., 1986). Casein phospho-

peptides (CPP) have the ability to stabilize calcium

phosphate in solution through binding amorphous

calcium phosphate (ACP) with their multiple phos-

phoserine residues. This allows the formation of

small CPP±ACP clusters, but without allowing

growth to the critical size required for nucleation of

crystal growth and subsequent precipitation of cal-

cium phosphate (Holt et al., 1996; Holt, 1998).

These CPP±ACP clusters are prepared by tryptic
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digestion of bovine casein phosphopeptide, with sub-

sequent puri®cation by ultracentrifugation (Gagnaire
et al., 1996), or the more commercially viable tech-
nique of ultra®ltration (Reynolds, 1991). Extensive

characterization of these preparations has taken
place (Reynolds et al., 1994; Park et al., 1998; Park
and Allen, 1998; Holt et al., 1998), and their cal-

cium-binding properties have been examined (Meisel
and Olieman, 1998; Park and Allen, 1998). From

observations that there is an inverse relation
between plaque calcium and caries incidence (Shaw
et al., 1983; Margolis and Moreno, 1992), it follows

that a product such as CPP±ACP, which can sig-
ni®cantly enhance the availability of calcium in pla-

que, should have an anticaries protective e�ect, by
suppressing demineralization, enhancing remineraliza-
tion, or possibly a combination of both. Reynolds

(1997) has demonstrated that CPP±ACP can remi-
neralize subsurface lesions in human enamel and
this is indeed the basis of the claim of his patent

(Reynolds, 1991), although there is compelling evi-
dence that these compounds can also inhibit the ad-

hesion of cariogenic streptococci to the tooth
surface (Schupbach et al., 1996).
All substances that are found in plaque ¯uid and

are not derived from the bacterial components of pla-
que must di�use into the bio®lm, creating gradients

between the outer and inner concentrations. Di�usion
of any substance in plaque is controlled by three fac-
tors: the molecular-sieve e�ect that allows small mol-

ecules to di�use through gaps that are impenetrable
to larger ones; the molecular weight of the di�using
species, the square of which is inversely proportional

to the di�usion coe�cient; the binding characteristics
of the di�using species, which dictate how much is

free to di�use at a given time (Rose and Turner,
1998). For calcium di�usion in the CPP±ACP/Ca sys-
tem, only the last two are of importance (assuming

the CPP±ACP is already in place). At neutral pH,
calcium di�usion is limited by the signi®cant quantity
of calcium which is bound, reducing the e�ective dif-

fusion coe�cient (De), and creating a measurable
restricted e�ective di�usion coe�cient (rDe) where

rDe=De/(R + 1) in which R is the ratio of bound to
free calcium. It has been demonstrated that by provid-
ing a large number of potential binding sites for cal-

cium, the calcium-binding groups on bacterial cell
surfaces have signi®cant e�ects on the calcium di�u-

sion coe�cient and this e�ect is maintained at lower
pH, although overall di�usion is slightly faster (Rose
and Dibdin, 1995; Rose et al., 1997). It is likely that

by providing even extra calcium-binding sites, CPP±
ACP will have measurable e�ects on calcium di�usion
in plaque. Hence, the aim now was to elucidate the

e�ect of CPP±ACP on calcium di�usion in plaque at
di�erent pH.

2. Materials and methods

2.1. Bacteria

Di�usion was studied in model plaques prepared
from Streptococcus mutans R9, a strain isolated from a
human carious lesion by P.D. Marsh. The organism
was maintained on Todd±Hewitt agar plates (+0.4%

glucose). For preparation of experimental cultures,
colonies were inoculated into 20 ml Todd±Hewitt
broth and grown anaerobically overnight at 378C. A

portion (1 ml) of this culture was inoculated into
400 ml of Todd±Hewitt broth and incubated for 17 h
at 378C. The culture was centrifuged at 9000 g for

20 min at 48C and pellets were pooled and washed
twice by resuspension in 10 ml chilled experimental
bu�er and centrifugation at 6000 g for 10 min at 48C.

2.2. E�usion experiments

About 250 mg of the resulting pellet was transferred
to a weighed Eppendorf tube and resuspended, for
30 min at 48C, in 500 ml bu�er, containing 185 kBq
[3H]inulin (Amersham International plc, Amersham,

UK) and 76 kBq 45Ca (Amersham) with variable
amounts of unlabelled calcium carrier, and with CPP±
ACP (kindly supplied by SmithKline Beecham, Wey-

bridge, UK) at 0.1±1.0% by weight. For experiments
at pH 7.0, the bu�er used was 0.05 mol/l dipotassium
PIPES, containing 0.1 mol/l D-glucose, while for exper-

iments at pH 5.0, 0.1 mol/l MES containing 0.1 mol/l
KCl and 0.1 mol/l D-glucose was used. After incu-
bation, the cells were spun at 6000 g for 10 min. The

supernatant was recovered and three 25-ml samples
were taken for dual-channel scintillation counting (see
below). These gave the tracer concentrations in equili-
brium with the sample at the start of each e�usion ex-

periment ([3Hinulin]0 and [45Ca]0). About 25 mg of the
sediment was transferred to 1 mm-deep e�usion wells
[see Rose et al. (1997)], spread evenly and weighed.

This model plaque was then covered with a high-por-
osity Anotec alumina membrane support (Anodisc 13,
0.2-mm pore size; Whatman Ltd, Maidstone, UK),

which was in turn held in place with a silicone rubber
`O' ring. The well assembly was placed into the e�u-
sion chamber, and e�usion started by addition of 6 ml
of tracer-free bu�er containing the same concentration

of calcium carrier and CPP±ACP as used above. Six
chambers were ®lled and run concurrently. Samples
(25 ml) were taken at intervals of 3 min to start with,

increasing somewhat toward the end of the experiment
Ð usually about 200 min. Samples were taken with a
25-ml glass syringe, which was rinsed three times in

deionized water between samples. The samples were
placed in polypropylene scintillation mini vials, mixed
with 3.5 ml of scintillation ¯uid (LKB Optiphase
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`Safe'; Fisons plc, Loughborough, UK), shaken twice
and counted for 300 s (LKB 1217; Rackbeta LKB-

Wallac, Milton Keynes, UK) with windows set for
dual counting of the two isotopes. The three 25-ml
samples of extracted incubating ¯uid described above

were also counted at the same time.

2.3. Data analysis

2.3.1. Correction for sample size

As a volume of up to 1 ml (1/6 of the total sample
volume) was removed during the experiments, a short
BASIC program, ALEX, was used to allow for the

lowered volume and so calculate corrected counts.

2.3.2. Calculation of the di�usion coe�cient
Eq. (1) below is a saturating exponential, de®ning

counts in the clearance solution, in which C1 is the
asymptotic count, Ct is the volume-corrected count at
time t and a is an exponential constant. It was ®tted to

each set of 45Ca and [3H]inulin e�usion data using
Fig.P/P.Fit software (Biosoft, Cambridge). The data
were curve-®tted with a variable x-axis intercept (d ) to
allow for the fact that the ®rst 30% of e�usion does
not follow this equation (Dibdin, 1988)

Ct � C1�1ÿ eÿa�t�d��: �1�
For an e�usion system of the type used in this work,
the exponential constant is related to the di�usion
coe�cient by:

rDe � 4a`
p 2

�2�

in which ` is the depth of the well (McNee et al., 1979;

Dibdin, 1993). The e�usion of a strongly bound diva-
lent cation through a bacterial plaque would have a
retarded e�ective di�usion coe�cient [rDe (Rose and

Dibdin, 1995)] because of reversible adsorption at
speci®c sites. rDe is reduced from De (the e�ective dif-
fusion coe�cient) by:

rDe � De

R� 1
�3�

in which R (Crank, 1975) represents the ratio of bound
to free calcium, i.e.

R � �Ca�b
�Ca�f

�4�

where [Ca]f is, by de®nition, the same as in the bathing
solution and R is a constant during the experiment if,
as throughout our system, [Ca]carrier> > [45Ca]. rDe

asymptotically approaches De as the ratio of bound to
free calcium tends towards zero. The point (k ), at
which rDe=De/2 (and [Ca]b=[Ca]f) may be used as a

measure of the e�ect of [Ca] on the change in rDe.
Bound and free calcium are related by the equation

(Rose and Hogg, 1995):

�Ca�b �
Cmax �Ca�f
Kd � �Ca�f

�5�

in which Cmax is the binding capacity and Kd is the dis-

sociation constant. Concentration therefore a�ects the
rate at which a front moves through the plaque or
®lm. Although binding is not linearly related to the

free calcium concentration, the use of a chosen concen-
tration of calcium `carrier' in this work e�ectively
ensured that the binding ratio, R, is constant with pos-

ition and time. All di�erences were tested for signi®-
cance by one-way ANOVA.

3. Results

Fig. 1 shows an example e�usion pro®le for calcium
with CPP±ACP and ¯uoride for comparison (from
Rose and Turner, 1998). In this form of curve, the

steepness is proportional to the di�usion coe�cient
(see Eqs. 1 and 2) and the height of the asymptote rep-
resents the amount of calcium released at equilibrium,

which is a function of the amount present in the model
plaque at the start of the di�usion. It may be clearly
seen that, in this example, ¯uoride increases the rate of

di�usion and the total amount available. CPP±ACP,
in contrast, increases the amount but decreases the
rate.

Figs. 2 and 3 show the e�ect of CPP±ACP and F
on the restricted calcium di�usion coe�cient at pH 7.0
and 5.0, respectively. Fluoride increases di�usion,
whereas CPP±ACP reduces it. Note that all three

curves converge on an asymptote at high [Ca] where
the free Ca predominates but that the F curve
reaches this at lower calcium concentration, the cal-

cium-only curve next and then the CPP±ACP curve
reaches the asymptotic value at high calcium concen-
tration. At pH 5.0, the three convergences on the

asymptote take place in the same order but at lower
[Ca].
Figs. 4 and 5 show plots of di�usion coe�cients for

calcium against [CPP±ACP]. From this one can see

that there is a signi®cant reduction in the di�usion
between 0 and 1 g/l [CPP±ACP] but addition of CPP±
ACP beyond 1 g/l has no additional e�ect. At pH 5.0,

the di�usion coe�cients are greater, but once again,
the maximum change occurs between 0 and 1 g/l CPP±
ACP.

Table 1 shows the values of k and De derived
from Figs. 2 and 3. Treatment with ¯uoride sig-
ni®cantly reduces the value of k, indicating faster di�u-
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sion at physiological calcium concentration. Treatment

with CPP±ACP has the opposite e�ect, raising the

value of k signi®cantly and indicating slower di�usion

at physiological calcium concentration. In each case,

no signi®cant change was found in the value of De

(found from the asymptotic values of the curves in

Figs. 2 and 3, see Eq. 3). This shows that, as expected,

any di�usion restriction brought about by binding can

be overcome at unphysiologically high calcium concen-

trations.

4. Discussion

For di�usates such as calcium, Dibdin's e�usion cell

provides a reproducible method for measuring di�u-
sion under a wide range of chosen conditions.

In milk, casein stabilizes the structure of the

liquid in order for it to maintain its high calcium

phosphate concentration without allowing precipi-

tation. Three caseins are known (a,b,k ) with di�er-
ent functions and peptide sequences, but all contain

Fig. 1. Example e�usion pro®le for calcium with CPP±ACP [and ¯uoride for comparison, from Rose and Turner (1998)]. Points

are individual measurements from one e�usion cell.

Fig. 2. The e�ect of CPP±ACP and F on the restricted e�ective calcium di�usion coe�cient at pH 7.0. At physiological [Ca] ¯uor-

ide increases di�usion, whereas CPP±ACP reduces it. Points are mean2SD, n=6.
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the phosphoseryl cluster sequence -ser(P)-ser(P)-

ser(P)-glu-glu, clearly a region of high negative

charge and a likely calcium-binding site. The major

peptides produced by tryptic digestion are b(1±25)
and as1(59±79), each of which contains one of the

phosphoseryl cluster sequences (Reynolds, 1991). The

product has been shown to contain ACP in the form

Ca3(PO4)1.87(HPO4)0.2.xH2O with the CPP/ACP ratio

of [as1(59±79)(ACP)8]n where the predominant form

has n=6 (Reynolds, 1991).

Competitive-binding studies using equilibrium dialy-

sis have shown that CPP±ACP and calcium compete

for the same binding sites in dental plaque (Rose,

2000). From this work, it is estimated that the CPP±

ACP binding a�nity is about 0.55 g/l and the capacity

is 0.16 g/g wet wt. By analogy with known calcium-

binding a�nities, this shows that roughly three calcium

ions per CPP±ACP unit are involved in binding to

bacterial cells and this corresponds to a calcium bind-

ing a�nity of 0.3±0.5 mmol/l. At pH 5.0, there is a sig-

ni®cant loss of binding sites due to neutralization by

the increased proton concentration, reducing the bind-

Fig. 4. Plot of the variation in restricted e�ective di�usion coe�cient for calcium at 5 mmol/l [Ca] against [CPP±ACP], pH 7.0.

Points are mean2SD, n=6.

Fig. 3. The e�ect of CPP±ACP and F on the restricted e�ective calcium di�usion coe�cient at pH 5.0. Points are mean2SD, n=6.
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ing capacity to 0.11 g/g wet wt cells with no measur-
able change in a�nity (Rose, 2000).

The bene®ts of having such a large source of calcium

and phosphate at or near the sites of possible deminer-
alization are clear. There can be little doubt that, when

present, CPP±ACP will release calcium and this is
likely to inhibit demineralization, enhance reminerali-

zation, or possibly both. From this work, it is clear
that CPP±ACP increases the number of potential cal-

cium-binding sites thereby decreasing the calcium di�u-
sion constant. This large e�ect will decrease the rate of

calcium loss from plaque during a cariogenic attack,
and although the di�usion coe�cient is raised as bind-

ing sites are lost through neutralization at the lower
pH typically found in plaque during a cariogenic epi-

sode, it remains considerably lower than it would be in
the absence of CPP±ACP. However, the decreased dif-

fusion rate will continue to occur as plaque returns to
the resting pH value and then beyond that, slowing

di�usion of salivary calcium into plaque. Once again,

this slowing would tend to decrease the potential for
remineralization were it not for the ability of CPP±

ACP to provide much greater plaque calcium concen-
trations.

The potential e�ects of the presence of CPP±ACP in

plaque (reduction in di�usion; inhibition of deminerali-
zation; increase in calcium binding; enhanced reminer-

alization) are mirrored by similar e�ects from the
single most useful anticaries agent, ¯uoride. Given that

CPP±ACP can be incorporated into foodstu�s as well
as therapeutic agents and demonstrates none of the

adverse e�ects of ¯uoride overuse (¯uorosis at moder-
ate doses and toxicity at higher doses), it is possible

that this product may become an important anticaries
agent in the future.

In summary, CPP±ACP signi®cantly reduces the
rate of calcium di�usion in model dental plaques at

neutral pH and pH typically found during a cariogenic
challenge. Hence, application of CPP±ACP to plaque

may reduce calcium loss during a low-pH episode and

Fig. 5. Plot of the variation in restricted e�ective di�usion coe�cients for calcium at 5 mmol/l [Ca] against [CPP±ACP], pH 5.0.

Points are mean2SD, n=6.

Table 1

Variation in k and De with ¯uoride of CPP±ACP treatment at pH 7 and 5, derived from Figs. 2 and 3a

No treatment +5 mmol/l ¯uoride +1% CPP±ACP

De (�1010 m2sÿ1) k (mmol/l) De (�1010 m2sÿ1) k (mmol/l) De (�1010 m2sÿ1) k (mmol/l)

pH 7.0 2.221.2 5.721.9 2.320.7 2.420.4��� 2.921.5 12.321.4���

pH 5.0 2.820.6 4.122.3 2.620.5 2.120.6��� 3.020.9 14.922.2���

a All ®gures are in mmol/l, ��� denotes signi®cant di�erences between treated and untreated plaques at p<0.001.
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limit demineralization. The presence of CPP±ACP in
plaque should, therefore, permit a rapid return to rest-

ing calcium concentrations and allow more immediate
remineralization. Overall, once in place, CPP±ACP is
likely to restrict the caries process.
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