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The restoration of the endodontically treated tooth is a subject that has
been evaluated and discussed widely in the dental literature. Despite the large
number of in-vitro and in-vivo investigations, however, there is still
much confusion regarding ideal treatment. Scurria et al. [1] followed up
the restorative outcome of 1199 endodontically treated teeth through an in-
surance claims system. They reported the percentage of noncrown restora-
tions placed during the subsequent 2 years after endodontic therapy: the
anterior tooth group was 67%, the premolar group was 54%, and the molar
group was 50%. Based on these data, it seems clear that there continues to be
significant confusion regarding the restoration of endodontically treated
teeth.

The endodontically treated tooth is a unique subset of teeth requiring
restoration because of several factors. First, it was thought that the dentin
of endodontically treated teeth was significantly different than vital dentin
[2,3]. However, more current research casts doubt on this assumption [4,5].
Second, a percentage of structural integrity is lost because of the access
preparation [6]. This loss clearly has a negative effect on the fracture resis-
tance of the endodontically treated tooth. Third, the neurosensory feedback
mechanism is impaired with the removal of the pulpal tissue, which may
result in decreased protection of the endodontically treated tooth during
mastication [7].

The longevity of endodontically treated teeth is difficult to evaluate
because of the many mitigating factors. Perhaps the most important
factor that is not reported in clinical studies is the amount of remaining
coronal tooth structure before the final restoration. This factor is much
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more important than others that are reported, such as post material and
design and cement and core material. Mentink et al. [8] reported an 82% suc-
cess rate in post-restored teeth after 10 years. Torbjorner et al. [9] reported
a 2.1% failure rate per year. Finally, Nanayakkara et al. [10] reported the
median survival rate to be 17.4 years. The failure of endodontically treated
teeth is seldom caused by the endodontic therapy. The primary cause of
failure is inadequate restorative therapy followed by failure attributable to
periodontal reasons [11]. It has been acknowledged for many years that
adequate cleaning and obturation of the canal system are essential [12]. In
the past decade, however, there has been an increased emphasis on failure
caused by orthograde contamination resulting from salivary contamination
through an open access preparation or a faulty margin [13–18]. The ultimate
decision regarding post placement and choice of restoration is determined
by several parameters. Each of these considerations is discussed in detail.

Indications for post placement

The purpose of a post and core is to reinforce the remaining coronal
tooth structure and to replace missing coronal tooth structure [19]. Although
some studies indicate that a post strengthens a tooth [20,21], most studies sug-
gest that this is not the case [22–24]. The decision regarding post placement
should be made based on the position of the tooth in the arch, the amount
of coronal remaining tooth structure, and the functional requirements of
the tooth.

Molar teeth

Molar teeth receive predominately vertical rather than shear forces. Un-
less a large percentage of coronal tooth structure is missing, posts are rarely
required in endodontically treated molars. More conservative methods of
core retention include chamber retention, threaded pins, amalgam pins,
and adhesive retention [25]. Nayyar and Walton [26] described the amalcore
or coronal-radicular restoration. Amalgam is placed into the chamber and
2 mm into each canal space. This restoration has been successful in both
laboratory [27] and clinical studies [26].

The use of threaded pins, both in vertical and horizontal positions [25],
has been shown to be quite effective in core retention [28]. There continues
to be concern, however, that threaded pins will cause fractures in the endo-
dontically treated tooth. Although there are minimal data to support this al-
legation, the use of threaded pins has waned in recent years. Today there is a
greater emphasis on the adhesively retained core [29,30]. It is clear, however,
that the degree of adhesion decreases with thermocycling [31] and with func-
tional loading due to fatigue [32,33]. Until long-term clinical data are
available, traditional retention methods should continue to be used in con-
junction with the newer adhesive technologies. When a post is required
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because of lack of adequate remaining coronal tooth structure, it should
generally be placed only in the largest canal; that is, the palatal canal in
the maxillary molar and the distal canal in the mandibular molar.

Anterior teeth

Because of the shearing forces that act on them, anterior endodontically
treated teeth are restored with posts more often than posterior teeth. It is
commonly held today that the purpose of the post is to retain the core
and to strengthen the remaining coronal tooth structure. Laboratory studies
suggest [22–24] that the post does not provide increased fracture resistance
to the root and may, in fact, weaken the tooth. When there is no functional
or aesthetic requirement for a full-coverage restoration, a post is not indi-
cated. If a full-coverage restoration is chosen, however, the decision to place
a post is dictated by the amount of coronal remaining tooth structure after
the crown preparation is completed and the functional requirements of the
restored tooth. Current research indicates that when an enamel-bonded por-
celain veneer is being placed on an endodontically treated tooth, there is no
need for a post [34].

Premolar teeth

When restoring an endodontically treated premolar, a decision regarding
post placement is made based on the remaining coronal tooth structure, the
functional requirements of the tooth, and an evaluation of the forces that
act on the tooth. For example, if an endodontically treated premolar has
increased functional stresses acting on the crown due to loss of the perio-
dontium and is to serve as an abutment for a removable partial denture, a
post may be indicated [35]. Conversely, if a premolar has a relatively short
crown and functions more like a small molar, then a post is not indicated.

When a post is indicated for placement in a maxillary premolar, the
delicate morphologic anatomy must be considered [36–38]. Post systems
that require minimal enlargement and reshaping of the canal space, such
as tapered posts, are best suited for maxillary premolars.

Post design

Regarding retention, the active threaded post ismost retentive, followed by
the passive parallel post; the passive tapered post is least retentive [39–41].
The style of post selected should be based on the amount of retention re-
quired for long-term success of the post. For example, if the available post
space is short, 5 to 6 mm, a more retentive active post may be indicated. If
the available post space is 8 to 9 mm and the canal is not funnel shaped, a
tapered post may be a better choice. This is because the available post space
is long enough to provide adequate axial retention and it does not require
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canal enlargement during post space preparation. The design of the post
head has a significant effect on the retention of the core material [42,43].
A post should be selected that has a head design appropriate for the chosen
core material.

Post length

It is self-evident that greater post length results in greater post retention
[40,41]. However, it is important that 4 to 5 mm of gutta percha remain at
the apex to minimize leakage [44,45]. When placing a passive post, it should
generally be as long as possible while not encroaching on the necessary
remaining gutta percha [46].

Post diameter

Although post retention slightly increases with an increase in post diam-
eter [47,48], the ultimate tooth-post combination is weakened because of
the increased post diameter [49,50]. The post diameter should be as small
as possible while providing the necessary rigidity. It is always important
to leave as much tooth structure as possible in all phases of treatment [51].

Surface preparation

Preparation of both the surface of the post and the canal surface can sig-
nificantly improve post retention [52–56]. Air abrasion and notching of the
post have been shown to increase retention. Laboratory data indicate that
placing notches or grooves in the surface of the canal also improves post
retention [57].

Canal preparation

There are three primary methods of gutta percha removal for post space
preparation, including rotary instruments, heat, and solvents. All three
methods are effective [44,58–61]. Regardless of which method is used, care
must be taken to ensure that the periodontal ligament is not damaged. In-
judicious use of rotary instruments, such as Peeso Reamers, may cause a sig-
nificant temperature increase on the root surface [62,63]. Similarly, a hot
instrument may damage the periodontal ligament. Post space preparation
may be accomplished at the same appointment in which the canal is obtu-
rated or can be delayed for 24 hours or more. The in-vitro data do not in-
dicate that one method is superior to the other [58,60,64–66].
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Cement placement

The method used to place cement into the canal before post placement
has a significant effect on post retention [67,68]. Spinning the cement into
the canal with a Lentulo Spiral has been shown to be the most effective
method. Placement of cement with a needle tube is also effective as long
as the tip of the needle tube reaches the bottom of the canal space. After
the cement is placed into the canal, the post is coated with the cement
and placed in the canal.

Luting cements

The importance of the type of cement used for luting posts has been over-
emphasized in the dental literature. Currently there are five types of cement
available for post cementation. In recent years, there has been a great deal of
interest in the use of resin cement to bond a post into a prepared canal.
Some laboratory studies have shown a significant increase in post retention
with resin cement [69–71]. If zinc oxide eugenol is used as the sealer, how-
ever, it is not possible to bond successfully to the canal dentin without sig-
nificantly enlarging the canal [72–77]. When ZOE is used as the sealer,
composite luting cement provides no advantage over more traditional ce-
ments, and it is significantly more expensive and technique sensitive. Poly-
carboxylate cement has lower compressive strength and therefore is not a
first choice [78]. Glass ionomer has adequate physical properties; however,
it is a slow-setting material that requires many hours to achieve adequate
strength [79]. Resin-modified glass ionomer cement, as originally formu-
lated, had significant setting expansion. The current generation of resin
ionomer cement has overcome this problem and is widely used for post
cementation [80]. The most traditional of all cements, zinc phosphate, has
adequate physical properties, is inexpensive, and easy to use, and remains
an excellent choice for post cementation. When techniques are available
to remove canal contaminants in a noninvasive manner, resin cement will
probably be the luting agent of choice. However, none of the currently
available cements can overcome the problems associated with a poorly
engineered post.

Types of posts

Metallic posts

Custom-cast posts
The custom-cast post has a long history of clinical success; however,

when it is compared to parallel prefabricated posts, both in vitro [81–84]
and in vivo [9,85], its superiority is questionable. There are, however,
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circumstances in which the custom-cast post is the restoration of choice [19],
including the following: (1) When multiple cores are being placed in the
same arch. It is more cost effective to prepare multiple post spaces, make
an impression, and fabricate the posts in the laboratory. (2) When post
and cores are being placed in small teeth, such as mandibular incisors. In
this circumstance it is often difficult to retain the core material on the head
of the post. (3) When the angle of the core must be changed in relation to the
post. Prefabricated posts should not be bent; therefore, the custom-cast post
best fulfills this requirement. (4) When an all-ceramic noncore restoration is
placed, it is necessary to have a core that approximates the color of natural
tooth structure. If a large core is being placed in a high-stress situation, resin
composite may not be the material of choice due to the fact that it tends to
deform under a load [32,33]. In this circumstance, the post and core can be
cast in metal, and porcelain can be fired to the core to simulate the color of
natural tooth structure [86]. The core porcelain can then be etched with
hydrofluoric acid, and the all-ceramic crown can be bonded to the core.

Prefabricated posts
Passive tapered posts. The essential guideline in post placement is to main-
tain as much natural pericanal tooth structure as possible. The post that best
meets this requirement is the passive tapered post, because it mimics the nat-
ural canal shape. However, due to its tapered shape, it provides the least
amount of retention [40,41]. When there is adequate canal length for axial
retention (8 to 9 mm), and the canal is not funnel shaped, the tapered post
is an ideal choice. It is especially useful in the restoration of maxillary
premolars, due to their thin, fragile, fluted, tapered root form [36–38].

Passive parallel posts. The parallel post has had a long history of successful
use, and it is the post by which all others are measured [9,39–41,85,87]. It
provides greater retention than the tapered post; however, a biologic price
must be paid for this increase in retention. Because the tapered canal shape
must be modified to accept the parallel post, pericanal tooth structure must
be removed. A parallel post is therefore recommended when there is a need
for increased retention and preparation of the parallel canal space will not
jeopardize the root integrity in the apical one third.

Active posts. The term active implies that the threads of the post actually
engage or screw into the pericanal dentin. Because there are several different
designs for active posts, it is difficult to generalize regarding their success.
The V-Lock (Brasseler; Savannah, GA) and the Flexipost (Essential Dental
Systems; Hackensack, NJ) have performed well in laboratory investigations
[72,88–93]. The primary indication for an active post is a circumstance in
which there is a need for increased retention in a short canal space that can-
not be attained with a passive post.
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Non metallic posts

Carbon fiber posts
There has been a significant amount of interest in the development of

nonmetallic post systems in recent years. The carbon fiber post (CFP) has
been the leader in this category. The disadvantages of the CFP include its
black color and its radiolucency, which make it impossible to detect radio-
graphically. The proposed advantages of the CFP are that it can be bonded
to and that is possesses a modulus of elasticity (rigidity) similar to dentin
[94], making it significantly more flexible than metal posts [95]. The labora-
tory data indicate, however, that the bond strength of a composite core
material to a CFP is, in fact, less than the mechanical retention of composite
core material to a metal post [96,97]. It has been reported in one study that
bond strength to the CFP can be increased with air abrasion [98], whereas
another study reported a decreased bond strength after air abrasion [99].
The issue of post flexibility remains controversial. One group of laboratory
studies [100–102] reports increased fracture resistance with the CFP
when compared with a metal post, whereas another group of studies [103–
106] reports increased fracture resistance with the metal post. The literature
does support the notion that the nature of the fractures is more favorable
with the CFP than with the metal post [100–105] in all but one study that
reported opposite results [107]. Significant concern exists regarding the effect
of thermal and cyclic loading on flexural strength of the CFP. A laboratory
study reported a significant decrease in flexural strength after cyclic and
thermal loading [99]. Regarding post retention, the laboratory data that
compare the CFP to metal posts are again equivocal. One study reported
increased retention with the CFP [107], another reported equal retention
[108], and a third study reported decreased retention with the CFP [94].

The clinical data regarding the success of the CFP are favorable. Fred-
riksson et al. [109] reported no failures in 236 teeth restored with the CFP
in a mean duration of 32 months. Ferrari et al. [110] compared the CFP
to the custom-cast post over 4 years. They reported an 11% failure of the
custom-cast post, whereas there were no failures of the CFP group due to
the post. In another retrospective study, Ferrari et al. [111] reported on
the success of CFPs after 1 to 6 years of clinical service in 1304 teeth. They
reported a failure rate of only 3.2%. In a retrospective study, Manocci et al.
[112] reported a 3-year clinical study comparing the CFP with the custom-
cast post. Only one CFP of 226 failed because of post dislodgment, whereas
10 of 194 of the custom-cast posts failed because of root fracture.

Tooth colored posts
A major disadvantage of metal posts and CFPs is their dark color, which

adversely affects the natural appearance of the restored tooth. In an effort
to overcome this disadvantage, several tooth-colored posts have been
developed. These posts include the zirconium-coated CFP, Aesthetic-Post
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Plus (Bisco; Schaumburg, IL); the all-zirconium posts, Cosmopost (Ivoclar;
Liechtenstein, Germany) and Cerapost (Brasseler); and fiber-reinforced
posts, Light-post (Bisco), Luscent Anchor (Dentatus; New York, NY),
and Fibrekor Post (Jeneric Pentron; Wallingford, CT).

To conceal the black color of the CFP, one manufacturer covered the
CFP with a white zirconium coating, AesthetiPost (Bisco). It has been re-
ported that the physical properties of the coated CFP approximate those
of the black CFP [103].

The all-zirconium posts are white and radiopaque. They are quite rigid,
with a modulus of elasticity higher than stainless steel [113,114]. The dis-
advantages of the all-zirconium post include lower fracture resistance than
metal posts and an inability to bond to the post [43,114,115]. In addition,
if all-zirconium post fractures, removal of the residual post from the root
is difficult. Because of the inability to bond to this post, a technique has been
described whereby a leucite-reinforced ceramic core material (Empress,
Ivoclar) is pressed to the all-zirconium post [116,117]. This technique report-
edly provides an adequate bond between the post and the core. Clinical data
to support the all-zirconium post are minimal, although there are several
short-term clinical studies that show favorable results [113,118,119]. The
most recent group of tooth-colored posts to be introduced are the fiber-
reinforced composite post [120]. There are minimal data to support the
use of these post systems. One laboratory study found the fiber-reinforced
resin to be as strong as the CFP and approximately twice as rigid [98].

A final technique that has been advocated for the aesthetic restoration of
endodontically treated teeth involves the use of a composite and a woven
polyester bondable ribbon to provide a post and core [121]. Laboratory
studies that evaluated this technique found it to provide significantly lower
fracture resistance than CFPs [103], metal posts [103,122], and custom-cast
posts [122].

Minimal data are available that compare these nonmetallic posts. One
comparative laboratory study [123] that evaluated fracture resistance found
that the Empress (Ivoclar) post and core and the all-zirconium (Cosmopost,
Ivoclar) post and core were the weakest. The Vectris (Ivoclar) resin post and
composite core and the custom-cast gold post and core demonstrated inter-
mediate fracture resistance. The greatest fracture strength was demonstrated
with a titanium post and composite core and zirconium post and composite
core. At present, the laboratory data regarding the current generation of
nonmetallic posts are equivocal. There is a growing body of clinical data
that supports the use of the CFP; however, caution is advised in the use
of all nonmetallic post systems when high core strength is required and mini-
mal coronal tooth structure remains.

One of the most difficult restorative treatment situations occurs when a
significant amount of internal radicular tooth structure is missing because
of caries or iatrogenic removal. In recent years it has been postulated that
the missing internal dentin can be replaced with bonded composite, and a
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post then can be placed in a traditional manner [124]. A laboratory study
[125] compared this technique with a custom-cast post and core. The com-
posite-metal post technique provided significantly greater fracture resistance
than the custom-cast post and core.

Retention and resistance

The terms retention and resistance are commonly used interchangeably
and incorrectly. Retention is defined as that which resists a tensile or pulling
force; resistance is that which opposes any force other than a tensile force.
There are three factors that provide retention for a post: post configuration,
post length, and the cement. The decision regarding post selection should be
made based on the retention requirements of the post. The first factor is post
configuration. A post can be active (threaded into the dentin) or passive,
and it may be tapered or parallel. Ideally, a post should be selected that
requires the least amount of canal enlargement.

A tapered passive post best fulfills this ideal when the canal has not been
overenlarged and is of adequate length [40,41]. Adequate length in an ante-
rior tooth is considered to be 8 mm of post space plus 4 to 5 mm of remain-
ing gutta percha at the apex [45]. If more retention is required because of
decreased canal length or increased functional requirements (i.e., the tooth
is a fixed partial denture abutment), a less tooth-conserving passive parallel
post may be indicated. However, as available canal length for post place-
ment decreases, neither type of passive post provides adequate frictional
retention. In this circumstance, an active post is required.

The third retention feature is the cement. As discussed in a previous sec-
tion, the cement provides important retention to the post and core; however,
no cement can compensate for a poorly designed post.

The most important consideration in the long-term success of post-
retained restorations is the resistance form [87,126]. If the resistance require-
ments are not met, the probability of failure is high, regardless of the
retentiveness of the post. Resistance form is provided by three factors: anti-
rotation, crown bevel, and vertical remaining tooth structure. These three
factors work together to provide resistance form, so if one of the features
is decreased, long-term success would require that one or both of the re-
maining two features be increased.

The first feature is antirotation. Every post and core must have antirota-
tion [84,85]. In molars, antirotation is commonly achieved by the square
shape of the tooth; however, premolars and anterior teeth are commonly
more round. When a round post is placed in the round canal of a round-
shaped tooth, antirotation is essential to prevent shear forces from breaking
the cement seal. Antirotation can be provided by vertical remaining tooth
structure below the margin of the core. In the absence of significant vertical
tooth structure, antirotation must be incorporated into the post and core.
This task can be accomplished with slots or pins.
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The second resistance feature is the crown bevel. The factors that com-
monly make the placement of a crown bevel impossible are aesthetics
and biologic width requirements. With the advent of all-ceramic crowns
and ceramometal crowns with porcelain labial margins, a crown bevel is sel-
dom placed on an anterior tooth. For a bevel to provide significant resist-
ance, it must be at least 1.5 mm long [127]. Biologic width requirements
generally prevent the placement of this 1.5-mm bevel, especially in anterior
teeth.

The third and most important resistance feature is vertical remaining
tooth structure above the crown margin. Vertical tooth structure should
not be removed and smoothed during preparation for the post and core. It
has been shown in a laboratory study that only 2 mm of vertical remaining
tooth structure doubles the resistance form [128]. Regarding anterior teeth,
it is most important that this vertical remaining tooth structure be on the
facial and lingual surfaces. When there is minimal vertical remaining tooth
structure to provide adequate resistance form, the long-term success of the
post-core-crown combination will not be predictable. Increased vertical
tooth height can be gained by crown-lengthening surgery; however, in ante-
rior teeth, single-tooth crown lengthening often results in unacceptable aes-
thetics. The treatment of choice, before placement of the restoration, is
orthodontic eruption [129].

Core materials

Prefabricated posts are used more commonly than custom-cast posts, so
it is important to understand the properties of the available core materials to
select the appropriate material for a given situation. Five currently available
core materials are discussed.

The custom-cast post and core has a long history of successful use. It pro-
vides high strength, and there is no concern that the core may delaminate
from the post. The fabrication of the custom-cast post and core is expensive
and time consuming, however.

Amalgam also has a long history of success. Its strength has been
confirmed in laboratory studies in both static and dynamic loading [32,
33,81,130]. Amalgam has several disadvantages, however. The dark color
of amalgam has the potential to lower the value of all-ceramic restorations
and to cause a gray halo at the gingival margin. Additionally, it is not
possible to bond to set amalgam. Its low early strength requires a 15–
20-minute wait before core preparation, even when a fast-set spherical al-
loy is used. It is messy to prepare and can result in irreversible staining of
the marginal gingiva during preparation. Even in the face of these disad-
vantages due to its high ultimate strength, amalgam with a prefabricated
post, and the custom cast post are the materials of choice in a high stress
situation.
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Conventional glass ionomer has several advantages, including fluoride re-
lease and ease of manipulation; however, these advantages are outweighed
by the major disadvantage of low fracture toughness, which reflects a ma-
terial’s ability to resist crack propagation [78]. In an attempt to increase
the fracture toughness, silver reinforcement has been added to conventional
glass ionomer. Unfortunately, silver-reinforced glass ionomer also has a low
fracture toughness [131]. These materials should therefore only be used in
posterior teeth in which more than 50% of the coronal tooth structure
remains.

The newest available core material is resin-modified glass ionomer. It is
easy to manipulate; however, its physical properties lie between those of
conventional glass ionomer and composite [132]. In high-stress situations,
therefore, it is not the material of choice.

Composite resin has a long history of use as a core material due to its
ease of manipulation. It is available in light-cured, autopolymerized, and
dual-cured formulations, and it comes in tooth colors and contrast colors
for posterior use. A major advantage of composite is its ability to be bonded
to tooth structure and then to serve as a substrate to which a ceramic crown
can be bonded. Laboratory studies have confirmed adequate fracture tough-
ness [131] and compressive strength in a static load test [81,83]. However,
composite has not performed as successfully in dynamic load tests that
are performed in a chewing machine [32,33,130]. Under this repeated load,
the composite appears to undergo a plastic deformation that may lead to
core failure. Also, composite is not dimensionally stable in a wet environ-
ment [133]. As it absorbs water, the core expands and as the composite dries
out, the core shrinks.

Composite resin is the most user-friendly of all the core materials, so it
is the core material of choice when there is remaining coronal tooth struc-
ture to help support the core. However, when high strength is required
and there is minimal remaining coronal tooth structure, composite is not
the material of choice.

Definitive restorations

In posterior teeth there are several choices for definitive restorations, in-
cluding amalgam, direct composite, indirect composite, bonded ceramic,
and cast metal. All of these materials may be used for partial or complete
cuspal coverage and intracoronally. Because laboratory data [6] indicate
that a conservative access preparation has minimal effect on the fracture re-
sistance, some authors question the need for cuspal coverage restorations in
all endodontically treated posterior teeth. In support of this philosophy,
there are many laboratory studies that demonstrate the strengthening
effect of a bonded composite restoration [134–139]. Additionally, a re-
trospective clinical study [140] reported a high success rate when restoring
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endodontically treated posterior teeth with intracoronal direct placement
composite restorations; however, there is some question regarding the long-
term strengthening effect of the composite restoration. It is known that the
strength of dentin bonding decreases over time [141] because of load fatigue
[142] and thermocycling [31]. In addition, it is postulated that a portion of
the sensory feedback mechanism is lost when the neurovascular pulpal tissue
is removed during root canal therapy [7]. Clinically, this means that a person
can inadvertently bite with significantlymore force on an endodontically trea-
ted tooth than on a vital tooth due to the impaired sensory feedback mechan-
ism. Both laboratory [143] and retrospective clinical studies [85] have
demonstrated that the essential element in the long-term success of a posterior
endodontically treated tooth is the placement of a cuspal coverage restora-
tion. If conservative is defined as a restoration that has the highest probability
of conserving the tooth in function for the remainder of the life of the patient,
then the cuspal coverage is the most conservative choice. This type of restora-
tion can be accomplished with a wide variety of materials as long as the
restoration is well engineered.

Laboratory studies [22,24,82] indicate that the fracture resistance of an
endodontically treated anterior tooth with conservative endodontic access
is approximately equal to that of a vital tooth. For this reason, when a sig-
nificant amount of tooth structure remains and there is no plan to place a
crown, there is no need to place a post. A simple bonded composite is the
restoration of choice.

When at least 50% of the coronal tooth structure, including enamel,
remains intact, an enamel bonded porcelain veneer may be the restoration
of choice. A laboratory study confirms the efficacy of the porcelain veneer
in this circumstance [144] and also shows that a post is not indicated [34].
When the decision is made to place a crown for aesthetic or functional rea-
sons, however, a post may be indicated.

The decision to place a post in an anterior tooth is made based on the
amount of remaining coronal tooth structure after the crown preparation
and the functional requirements of the tooth. Because the maxillary lateral
incisors and the mandibular incisors are smaller teeth, a post is commonly in-
dicated before crown placement. In maxillary central incisors and canine
teeth, however, the decision should be made after crown preparation. If the
dentist believes there is adequate remaining tooth structure to provide adequate
resistance to fracture, a bonded composite is placed in the access preparation.
If, in the judgment of the dentist, there is insufficient remaining coronal tooth
structure to resist the functional or parafunctional forces, a post is placed.

Summary

It has been the purpose of this article to provide a rationale for the re-
storation of endodontically treated teeth. Treatment recommendations have
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been made in the areas of post design, placement technique, cements, core
materials, and definitive restorations, based on a review of the clinical and
laboratory data.
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