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BIOSTATISTICAL CONSULTATION
FOR DENTAL RESEARCH

Jonathan Clive, PhD

What do dentists need to know about statistics, and why do they
need to know it?

This article suggests some reasonable and convincing answers to
these questions. To focus the discussion, dental health care providers are
considered as either practitioners and specialists who see patients daily
but who do not perform scientific research (PR), or as dental researchers
(DR) who may see patients or students but are also actively engaged in
research.

In this article, it is generally assumed that dental researchers’ activi-
ties involve the acquisition and evaluation of some kind of data. The
term data simply refers to a description, numeric or otherwise, of the
attributes of the experimental units (patients, laboratory animals, teeth,
periodontal tissue, and so forth.) being considered. These may be as
basic as the number of decayed, missing, and filled teeth (DMFT), or the
number of decayed, missing, and filled surfaces (DMFS), gingival index,
or some more specialized and exotic measure, such as the number of
cells of a particular type per unit volume.

This article does not provide a crash course in statistics; in fact, no
specific statistics lessons are offered here (although some specific exam-
ples are provided). It would be counterproductive to attempt to cover
in this limited space subject matter that most introductory statistics texts
require several hundred pages to present. Instead, the author discusses
related general concepts that he believes are crucial for both dental
researchers and dental practitioners to understand before beginning the
statistical consultation process.
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STATISTICAL NEEDS OF DENTAL PRACTITIONERS

Although dental practitioners may not possess formal statistical
experience or training, they may frequently use several terms that com-
prise a basic statistics vocabulary. These terms may carry associations or
interpretations that are intuitively understood. Perhaps the terms most
often used in this fashion are mean and average. Given a set of numbers
(which can be assumed to represent data acquired during the course of
some research endeavor), the mean is often interpreted as the most typical
or most representative single value describing all the numbers. Although
there is some justification for this view, the term has a more rigorous
definition. To determine the mean of a set of data, one sums the data
values and divides by the number of observations. The mean represents
the center of gravity of a set of numbers, the value around which all
other numbers are distributed.

The standard deviation (or, equivalently, the variance, which is the
square of the standard deviation) is another basic summary attribute of
data that has a relatively straightforward meaning. It describes the
spread or dispersion of the numbers in the dataset around the mean. The
larger the standard deviation, the greater the variation, or heterogeneity,
among observations. These two measures, the mean and the standard
deviation, arise naturally in the logical study of data. Outlining this
development is helpful in understanding means and standard deviations
and in obtaining an overview of statistical procedures.

To do so, it is useful to consider a common graphic portrayal of
data, as illustrated in Figure 1A. This figure shows a histogram, which
illustrates the distribution of values for some variable, in a sample
assessed from some hypothetic population. The distribution of values
encompasses the values that occur in the data and the frequency with
which they occur. To generate a histogram, the range of the data (small-
est and largest values among the observations) is partitioned into succes-
sive intervals.

A set of DMFS scores, for example, might range from 0 to 40.
Intervals of DMFS could be designated as from 0–4, 5–10, 11–15, up to
36–40. The number of observations falling in each of these intervals is
then tallied, and a bar graph is generated. The height of the bar for each
interval is proportional to the frequency or the number of observations
falling within that interval. The resulting plot is called a histogram, and
it, too, is an intuitively and easily understood representation of data.
(Note that the width of the intervals must be constant so that the
comparison of frequencies is meaningful.)

BASICS 1: HISTOGRAMS TO BELL-SHAPED CURVES

Although useful and informative, the histogram represents little
more than a basic tool for exploratory data analysis and is purely
descriptive. Statisticians and mathematicians who were not satisfied
such heuristic descriptions, carried the idea further, asking what happens
when a histogram presents all the information possibly available. This
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Figure 1. A, A histogram can be used to graphically represent the distribution of values
contained in a sample of observations. Each bar corresponds to a range of values of the
measure being considered (X), and the height of the corresponding bar (Freq) is propor-
tional to the count or percentage of all observations falling into that category. Histograms
can be refined by designating more narrow intervals and increasing the number of observa-
tions. B, A histogram may be modeled, or approximated, by an appropriate mathematical
function (see text). FREQ � frequency.

limit can be approached, it was suggested, by making the intervals more
and more narrow as the sample size (the number of observations or
data points) becomes larger and larger. As successive histograms are
generated under these circumstances, their appearance is increasingly
seen to resemble a relatively smooth or continuous curve, in contrast to
a single histogram defined over a few intervals, which resembles a
conventional bar chart with adjacent bars.

The generation of such a curve suggests that it might be possible to
use some type of mathematical function to characterize it. A mathemati-
cal representation would have several desirable features. First, it would
provide a succinct way to describing a distribution, namely, the mathe-
matical function describing the curve. Second, it would serve as a basis
for comparing distributions across different populations or groups. Mak-
ing such comparisons is a basic activity of statistical inference.

Using a well-defined mathematical function to describe or model a
histogram is illustrated in Figure 1B. Here, a curve has been superim-
posed around the histogram shown in Figure 1A. The particular curve
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used here is called a normal curve, or normal distribution. It is also well
known as the bell-shaped curve familiar to most scientists. The term
normal in normal distribution is used as a name, and derives from the
suggestion that the distribution of most attributes in the normal (here
used as an adjective) population is well represented by the type of curve
shown in Figure 1B.

In fact, the normal curve is in many cases an acceptable representa-
tion of a distribution, even when the observed histogram is skewed or
not symmetric or, in general, somewhat poorly behaved. Furthermore,
one of the most remarkable results from mathematical statistics shows
that in almost all situations, no matter what the underlying form of the
histogram of observations, the distribution of means from the population
under study does tend to follow a normal distribution. The normal
distribution forms the core of much of statistical theory and practice.

It is important to understand the distinction between a histogram
(Fig. 1A) and the normal curve (Fig. 1B). The histogram represents the
data, or the real world, whereas the normal curve is strictly a model,
an approximation generated by statisticians. A normal distribution is
uniquely characterized by its mean and standard deviation. These are
the same parameters so intuitively familiar to nonstatisticians. The mean
of a normal distribution reflects the center of gravity of the values or
observations and is often referred to as a measure of location, or a measure
of central tendency. The normal distribution peaks at the mean value; that
is, the maximum value of the curve along the y-axis occurs at the
location of the mean on the x-axis. The standard deviation indicates the
spread of the distribution around the mean; the larger the standard
deviation, the more flat or less spiked the normal curve.

BASICS 2: CONFIDENCE-INTERVAL ESTIMATES

The mean and standard deviation of a normal curve (or any set of
data, for that matter) are often presented in the scientific literature as
mean � standard deviation. For example, an author might write that
‘‘the mean and standard deviation DMFS for the test group was 8.3 �
4.5, whereas for the control group the mean and standard deviation
DMFS was 11.6 � 5.2.’’ The symbol ‘‘�’’ means plus or minus and is
technically not correctly used in this context. The standard deviation is
a positive quantity. By convention, however, the use of this notation has
been almost universally adopted.

The best interpretation of a statement of the form mean � standard
deviation is that approximately 68% of all observations lie within one
standard deviation of the mean. Approximately 95% of all observations
lie within two standard deviations of the mean. (These statements apply
to observations that are well modeled by a normal distribution.) The use
of this notation does provide the reader with the notion of an interval
in which most of the data are contained. A confidence interval represents
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the natural extension of this notion of an interval estimate and is another
statistical concept commonly encountered in the scientific literature.

The use of a mean � standard deviation attempts to indicate both
the value of a mean and the precision with which the value was deter-
mined. Thus, one might simply note that ‘‘the estimated mean DMFS
was 8.3.’’ This statement can be extended to include a 95% confidence
interval: ‘‘The mean DMFS was 8.3, with a 95% confidence interval given
by (6.8, 9.8).’’ This statement means that one is 95% confident that the
interval from 6.8 to 9.8 inclusive contains the true mean DMFS for the
population under study. A 95% confidence interval given by (6.8, 9.8) is
much more precise than a 95% confidence interval given, for example,
by (4.8, 11.8).

Most scientific journals currently insist on the use of confidence
intervals beyond simple point estimates when discussing numerical
data. The difference between a simple point estimate and a confidence
interval is illustrated in the following statements: (1) ‘‘It is likely that the
restaurant is on 7th Avenue and 55th Street’’; and (2) ‘‘I am 95% confident
that the restaurant is on 7th Avenue between 52nd and 58th streets.’’

BASICS 3: COMPARING MEANS

If two distributions have identical means, one can assume that the
distribution of values of the variable being measured are identical in the
two groups from which the data were drawn. If two distributions have
similar means, the distributions are similar; finally, if two distributions
have different means, the distributions are different. Statistics provides
a way of estimating how probable it is that two or more means origi-
nated from the same underlying population. This probability is called
a ‘‘P-value’’ and is the last of the routinely invoked statistical terms
considered here.

P-values arise when two means are compared statistically. Thus,
one may report that ‘‘when the two means were compared using a t-test
of independent group means, it was observed that t on 44 degrees of
freedom was 4.55, P � 0.001.’’ The interpretation of this statement is as
follows: if there is really no difference between the groups being ob-
served, then the probability of observing a mean difference as extreme
or more extreme than that observed is less than 1 in 1000.

Because the P-value in the example is less than 0.05, the difference
is said to be statistically significant. This cutoff point for statistical signifi-
cance (0.05) is rather arbitrary but has developed into a standard in the
scientific literature over time. The P-value indicates the strength of the
evidence against the hypothesis of no difference in means. (The perspec-
tive of no difference is used because doing so reflects how the theory of
statistical hypothesis testing developed.) Small P-values indicate that the
hypothesis of no difference is unlikely. Unlikely does not mean impossi-
ble, however; therefore the researcher (or reader) must choose between
rejecting the hypothesis of no difference or accepting the conclusion
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that the data represent the unlikely instance of a large difference in
sample means.

STATISTICAL NEEDS OF DENTAL PRACTITIONERS—
GENERAL CONSIDERATIONS

Although dental practitioners generally do not need assistance in
designing and executing an experiment, there are circumstances in the
activities of daily practice for which some statistical insight is required.
For example, dental practitioners need to be able to keep up with the
scientific literature, studying and evaluating scientific reports appearing
in professional journals. Also, patients may ask questions such as, ‘‘Am
I at risk for losing my teeth?’’ or, ‘‘Am I at risk for periodontal disease?’’
or, ‘‘Am I at risk for oral cancer?’’

These are statistical questions. Risk is a statistical concept in epide-
miology, and the appropriate estimation of risk factors for major diseases
and other clinical conditions is a major topic in biomedical research. The
dental practitioner may not need to estimate the risk but rather may
need to be able to explain it and discuss it intelligently with a concerned
patient. In other circumstances, practitioners may need to evaluate an
article in the scientific literature and ponder the implications for their
practice. For example, a practitioner may need to decide whether an
article presents convincing evidence for switching to a different type of
material for restorations.

The study by Kilburn and Asmundsson10 serves as an example of
the importance of reviewing the scientific literature with a certain degree
of skepticism. These authors claimed to disprove the long-held clinical
maxim that the anteroposterior (AP) diameter of the chest is increased
in patients with advanced pulmonary emphysema (who were compared
with a group of nondiseased controls and a second group of patients
with non-emphysema diagnoses). In fact, the authors were not at all
reluctant to assert that ‘‘it is contended that measurement has destroyed
an apparently long-established and often repeated maxim that an in-
creased AP diameter is a common and useful sign of emphysema.’’

The experimental approach used in this study was suspect; further-
more, the authors cited no statistical evidence to support their claim.
They did, however, present sufficient tabulated summary measures to
enable the reader to carry out the basic statistical test that would have
been appropriate for the clinical question. When the reader carries out
the test (the level of statistical knowledge necessary to do so would be
acquired during the first third of an introductory biostatistics course),
the difference in mean AP diameter between the emphysema group and
the nondiseased controls is found to be statistically significant, with
P � 0.04! Thus, not only does this result contradict the main conclusion;
the authors themselves have provided the reader with the resources to
refute the paper.

In this case, the statistical test is a t-test of independent group means,
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two-tailed, carried out at the 0.05 level of significance. Note that is also
possible to perform a one-way analysis of variance given the tabulated
summary measures. A one-way analysis of variance permits comparison
of all three group means simultaneously, as well as the appropriate
multiple-comparison procedures to isolate group differences.

Is it reasonable to expect practitioners to be familiar with these
terms and to be able to duplicate statistical procedures of the type
discussed here in the course of evaluating a journal article? Probably
not. Any statistical background practitioners acquired in dental school
may be long forgotten, and the practitioner probably faces more pressing
concerns involving office management and patient treatment. In addi-
tion, the practical import of a study in the literature may need time to
propagate to the office of a practitioner.

Unfortunately, in the presentation of scientific studies, the situation
is often ‘‘let the reader beware.’’18 It is true that since the appearance of
the Kilburn, et al article, most journals have increased their requirements
for statistical rigor in submitted manuscripts. Many journals retain statis-
tical consultants for special reviews and will use statistically sophisti-
cated referees where necessary. Nonetheless, a practitioner may need to
know how to evaluate such issues as the suitability of the experimental
design, the appropriateness of the statistical tests used, and whether the
results of the test have been interpreted correctly.

STATISTICAL TRAINING FOR DENTAL
PRACTITIONERS

The practitioner must determine what level of statistical insight is
appropriate and how to acquire it. A suggested knowledgebase is shown
in Table 1. Although there is no one-size-fits-all statistics curriculum,
this table lists the basic topics an introductory statistics student should

Table 1. SUGGESTED TOPICS FOR A BASIC STATISTICAL EDUCATION, WITH
ASSOCIATED ENHANCEMENTS

Topic Contents Enhancements

Descriptive statistics Summary measures/graphics
Hypothesis testing Paired, 2-sample t-tests

Compare independent
proportions (analysis of Higher order contingency
2�2 tables) tables

Power/sample size
Type I and type II errors
One-way analysis of variance Linear models/higher order

ANOVA designs
Bivariate analysis Univariate regression/ Multiple linear regression

correlation Logistic regression

ANOVA � analysis of variance
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master. Beyond these basic topics, certain enhancements or intermediate
topics are given.

In the absence of a working knowledgebase of this type, a prac-
titioner may feel it sufficient to ‘‘ask around,’’ at professional meetings,
for example, concerning a particular topic. In special circumstances, it
may be necessary to secure the services of a statistical consultant from a
local university, college, or school of public health. (The department
secretary of the statistics or biostatistics department will, in most cases,
direct a PR to an available consultant or the director of a consulting
facility.) Sometimes these two approaches can be combined, as when a
local dental society, for example, invites a statistician to address a meet-
ing and discuss a reference of special interest to the members.

The practitioner may also want to audit a course in introductory
biostatistics. The course should be presented from a research perspective.
Most institutions of higher learning from the community college level
to the college, university, or academic health center (including schools
of public health) level offer such courses, and auditing privileges can
often be obtained.

Alternatively, practitioners may want to follow a self-study regimen.
There are a number of excellent references for this purpose, well written
and especially suited for individual use. For biostatistics, the author
recommends Glantz, Primer of Biostatistics8; for clinical epidemiology,
Sackett, Haynes, and Tugwell, Clinical Epidemiology17 and Friedman
Primer of Epidemiology7; and for general evaluation of the scientific litera-
ture, Riegelman, Studying a Study and Testing a Test.16 The truly ambitious
practitioner can acquire some statistical software. Statistical package for
the social sciences (SPSS) is a Windows-based, user-friendly program,
and inexpensive student versions are available. A number of self-instruc-
tion texts are available for this package to complement the useful in-
program documentation.2

STATISTICAL NEEDS OF DENTAL RESEARCHERS

At this point, it is appropriate to consider the statistical needs
of the dental researcher, although readers who consider themselves
practitioners are encouraged to keep reading. The statistical needs of
dental researchers are generally more pressing (e.g., there is generally
less time for a self-instruction approach) and may be more technically
advanced than the statistical needs of a practitioner.

Because the researcher is actively involved in some form of dental
research, the need for statistical input during all phases of the research
is important, from the initial formulation of the scientific or clinical
hypotheses being considered, through the execution of the project, to
the preparation of research papers and presentations. The extent and
amount of this input depend, of course, on the magnitude of the project.
Clearly, a survey of several thousand patients involving many study
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variables will require more statistical resources than a study involving
20 or 30 laboratory animals and few study variables. Nonetheless, the
planning issues are similar in both cases.

THE ROLE OF THE STATISTICAL CONSULTANT IN
DENTAL RESEARCH

Certain primary tasks are the biostatistician’s responsibility when
interacting with dental researcher. For the present discussion, it is as-
sumed that the consultation goes beyond a simple drop-in visit during
which the biostatistician can respond to a few simple questions such as
responding to comments in a manuscript review. Ideally, the researcher
and the biostatistician meet early in the planning process (at the research-
er’s initiative, of course), to discuss the nature of the research, whether
it is an intricate experiment with many outcome measures or a large-
scale clinical trial in which observations are collected at multiple points
over time on a large group of patients or experimental animals.

It is advisable for the biostatistician to become as familiar as possible
with the purpose of the research and the underlying scientific or clinical
considerations. This familiarity can accrue over time, as the biostatisti-
cian and the researcher meet repeatedly and interact regularly over the
course of planning and executing the project. It is not reasonable to
expect the statistical consultant to manifest the same level of understand-
ing of the scientific issues as the researcher. It is also not reasonable,
however, to expect the researcher to be able to handle the technical
mathematical issues of the statistics involved in the research.

Thus, in the interaction between researcher and statistician, what
the researcher needs to know about statistics mirrors in many ways
what the statistical consultant or dental patient needs to know about
clinical dentistry. A patient does not need to know the intricate and
minute clinical and scientific details of how a therapy works to benefit
from it. It is likely that over time a patient will become somewhat
familiar with aspects of the dental procedures received. For example, a
patient receiving implants would be able to advise other patients on the
nature of the process but would not be qualified to apply it.

Similarly, the researcher does not need to know whether maximum
likelihood or least squares algorithms were used to generate estimates
of model parameters. The model needs to target the specific aims of the
research and to address the fundamental hypotheses. It is the interpreta-
tion of the results of the analysis or modeling process that is crucial. (It
is assumed here that the biostatistician has appropriately diagnosed the
adequacy of the model—a process referred to as evaluating the fit of the
model. That is, this discussion assumes good statistical practice on the
part of the statistician, just as it assumes high standards of clinical and
scientific conduct on the part of the researcher.)
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STATISTICAL HYPOTHESES AND METHODS

The biostatistician and the researcher need to carefully establish a
one-to-one relationship between a set of clinical or experimental hypoth-
eses and corresponding statistical hypotheses. These hypotheses are
often expressed in opposite ways. For example, the clinical hypothesis,
‘‘This new treatment, together with proper oral hygiene, will greatly
reduce the rate of increase in DMFS compared with proper oral hygiene
alone,’’ might be expressed in a statistical context as, ‘‘There is no
difference in mean change in DMFS between the drug-and-oral-hygiene
and oral-hygiene-only groups.’’ This transcription will help to specify
the appropriate statistical procedures to be used in analyzing the data.

In some cases, the relationship may be more subtle and may require
extensive interaction and question-and-answer sessions between the re-
searcher and the biostatistician. It is quite possible that the type of
statistical methods selected will change as new understanding arises on
the part of both the researcher and the statistical consultant. New issues
may arise that require additional planning. In any case, it is important
to establish statistical hypotheses for all primary and secondary clinical
and scientific hypotheses and to take the nature of the corresponding
outcome variables into account. The statistical procedures should be
coordinated with the research-specific aims when a research proposal is
being jointly prepared.

COMPLICATING FACTORS

A number of characteristics of dental research need to be considered
when planning statistical analyses. The first characteristic is structural;
quite simply, one is dealing with multiple units if one considers individ-
ual teeth or even individual tooth surfaces. Statisticians refer to multi-
ple-unit data as high-dimensional data, and such data can seriously
complicate both the research planning and the data analysis. The usual
approach is to attempt a type of statistical analysis known as a dimension
reduction procedure and then study the reduced number of data units.
Alternatively, researchers can confine attention to a specified subset of
the original units. These issues are discussed by Clive and Woodbury.3

An example of such a situation is the paper by Löe et al, which
analyzes data from the well-known study of the progression of periodon-
tal disease among Sri Lankan tea laborers.12 The authors seek to identify
and characterize subtypes of disease development based on analysis of
loss-of-attachment measurements. Three disease subtypes were identi-
fied. Although the clinical utility of these types remains to be established,
their descriptive value is clear.

Many experiments in dental research involve the acquisition and
analysis of longitudinal, or repeated measurements, data, because the
development and manifestation of dental disease is often a gradual
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process. Longitudinal research concerns the assessment of experimental
units at several points in time over the entire chronologic course of the
research. Such observations are referred to as clustered, or correlated, data
because the outcomes for individual subjects may be related over time.

It is generally inadvisable to analyze such data in orthodox ways,
as if the observations were independent. For example, if a subject’s
DMFS is above average at time 1, it is likely to be so again at subsequent
readings; this degree of association can influence the analytic results and
needs to be accounted for. Developments in both applied and theoretical
statistics and computer science over the past two decades have made it
possible to deal with these analyses on a fairly routine level; these
approaches are discussed in Diggle, Liang, and Zeger’s The Analysis of
Longitudinal Data4 and in Littell, Milliken, and Stroup’s SAS� System for
Mixed Models.11

Armitage et al1 provide an interesting illustration of such research
in assessing the use of elastase as a marker for the progression of
periodontal disease. This paper, which appeared in the dental literature,
is paired with a technical paper from the statistical literature20 that
assesses the advanced longitudinal data analytic techniques in the spe-
cific context of periodontal disease. These articles are noteworthy in that
together they present research evaluating the appropriateness of a new
class of data analytic models as well as clinical and scientific applications
of the new analyses. The software for implementing these procedures is
now routinely available; this was not the case when the papers were
published.

Other interesting examples of longitudinal data analysis for dental
research are given by Neely14 and Chugal et al.2 Neely identifies key risk
variables for tooth loss based on analysis of the Sri Lanka data cited
previously.12 Subjects were seen between one and seven times, and loss
of attachment for two surfaces for each tooth were measured at each
point. Tooth loss was also assessed at each point and used as the
outcome variable for the analysis.

Chugal and colleagues2 investigated factors influencing the success
or failure of endodontic therapy. This research modeled the success or
failure for each canal. The number of canals within teeth varied, as did
the number of treated teeth across patients. In this case, there were, in
fact, two levels of clustered data: canals within teeth, and treated teeth
within patients.

Still another attribute of dental data that complicates analytic con-
siderations concerns the intrinsic lack of precision of some basic mea-
surements; this imprecision is sometimes referred to as noise. A good
example of noise is the limit on precision in measuring loss of attach-
ment. Although loss of attachment is a crucial outcome measure in
many studies, investigators need to be aware of the extent to which
experimental conclusions can be compromised by measurement defi-
ciencies. Certain experimental design considerations devised to deal
with the problem of noise are discussed by Imrey and Chilton.9
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SAMPLE SIZE AND POWER ANALYSIS

The estimation of sample size is a crucial aspect of research develop-
ment. Having too many experimental subjects wastes time and money,
a circumstance especially frowned upon by funding agencies. Having
too few subjects increases the risk of failing to detect a real effect or a
statistically significant difference. In statistical terms, the smaller the
sample size, the smaller the power of the experiment, which is the
chance of detecting a difference or effect that is really present. In the
chronology of planning, it could be argued that sample size estimation
precedes the specification of statistical techniques described previously.
The selection of methods of analysis often dictates the approach to
sample size estimation, however.

The design of the study is another factor influencing the estimation
of sample size. There are several well-established experimental designs
to consider, especially when the research is in the form of a clinical trial.
A randomized clinical trial is a design with at least two study groups
(test and control) to which eligible patients are assigned randomly. Other
designs include case-control, prospective cohort, crossover, and the less
scientificly rigorous pilot and observational studies. The selection of
an appropriate study design is an important aspect of researcher and
biostatistician interaction.

Sample size estimation must include a statistical justification in
terms of testing the primary research hypotheses and specification of
what a clinically or scientifically significant difference is for each of the
main outcome variables in the study. The term difference is used here to
denote the magnitude of the difference between summary outcome
measures across experimental groups.

Note that clinical or scientific significance may be different from
statistical significance. As Feinstein, citing Gertrude Stein, has noted,
a difference has to make a difference to be a difference.6 Thus, rational
experiment planning requires the researcher to estimate what difference
is noteworthy and to specify sample size accordingly. This planning is
in contrast to the haphazard selection of a sample size with the hope
that something statistically significant and worth reporting will turn
up.

Although the biostatistician actually provides sample size estimates,
these estimates are based on extensive input from the researcher. In
addition to the concepts cited previously, the researcher needs to have a
good working understanding of type I and type II errors. In statistical
terms, a type I error involves rejecting a true hypothesis of no difference,
and a type II error involves accepting a false hypothesis of no difference.
The probability of these events are denoted by � and �; the power of a
test is the complement of a type II error, with probability 1-�.

In research terms, type I and type II errors correspond to concluding
falsely that an effect is present or concluding falsely that an effect is
absent, respectively. Many researchers consider the latter more serious
than the former, because failing to detect an experimental effect might
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lead to loss of interest or motivation in the particular type of research
being performed. On the other hand, it is likely that a false effect will
be exposed sooner or later in the course of further research.

The researcher also needs to provide estimates of the magnitude of
the effect of the intervention on each of the outcome variables in one of
the research groups, together with an estimate of the variability; these
estimates are called pilot data. Making these estimates may seem counter-
intuitive, because it may reasonably be asked what purpose the research
serves if some concept of the size and variance of the intervention is
available a priori. In fact, researchers are not presuming to estimate the
effect of the experimental intervention but rather to make a reasonable
speculation on the response that could be expected in the control or
nonintervention group. The pilot data form the basis for estimating the
sample size required to observe a given difference.

Assume, for example, that an investigator is planning to test the
effect of an intervention hypothesized to reduce the rate of loss of
attachment. Suppose further that it is known that over some time period
untreated individuals will lose an average of 4 mm attachment, with a
standard deviation of 3.5, and that these estimates apply to the type of
patient population being studied. The biostatistical consultant can use
this information to estimate the number of patients needed to detect a
specified difference based on given values of � and � and the type of
analysis to be used.

SOURCES OF PILOT DATA

The division of labor is straightforward in sample size estimation.
The researcher needs to supply estimates of the appropriate summary
measures for the important outcome variables for at least one of the
groups in the study (probably the control or non-intervention group).
The researcher also needs to provide an idea of the magnitude of a
clinically significant effect. The statistician uses these data, together with
specifications of � and � and the statistical method to be used, to
estimate a sample size. Table 2 outlines the main steps in performing a
power analysis. It is permissible to estimate sample sizes for a range of
values of � and �, as illustrated in Table 3, which shows a sample size
table for the hypothetical experiment concerning loss of attachment
discussed previously.

There are several sources of assistance for the researcher in de-
termining what constitutes a clinically significant difference, as well as
providing pilot data for use by the statistical consultant in estimating
sample size or power. The scientific literature is a valuable source of
background data for this planning. It is quite likely that the researcher
has exhaustively reviewed the literature in the course of formally devel-
oping the research plan. The literature review may provide multiple
sources of pilot data as well as indications of the variation in response
across different classes of patients or potential research subjects.
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Table 2. PRIMARY STEPS IN CARRYING OUT A POWER ANALYSIS

Step Activity Responsibility

1 Specify clinical hypotheses DR
2 Determine primary outcome measures DR, B
3 Transcribe clinical hypotheses to statistical hypotheses DR, B
4 Specify range of clinically meaningful differences for DR

outcome measures
5 Specify �, � DR
6 Obtain pilot data for calculations DR
7 Obtain power/sample size estimates B
8 Evaluate results for final sample size/power specification DR, B

DR � dental researcher; B � biostatistician; � � probability of a type I error; � � probability of
a type II error

Input from colleagues is also a useful source of data for research
planning, especially when inquiries can be focused, so that matters of
pilot data and significant effect can be addressed directly. A researcher
who is also a practicing dentist may have a set of patient records worth
examining. Many providers use the readily available software (such as
spreadsheet packages) to construct their own databases, which may be
useful for planning; however, it is important to verify the standards
under which the data were assessed.

Some commercially available software packages for power analysis
provide interactive prompts for assisting users through the steps of a
sample size determination.6 These steps include a variety of techniques
for generating pilot data summary measures from limited input (e.g.,
estimating the standard deviation for an outcome variable based on
estimation of the range or percentile values). These techniques are useful
when prior knowledge or data are limited.

In some cases, suitable pilot data are lacking altogether. Such a
situation may arise, for example, early in the history of a line of scientific
inquiry or when first testing a new drug or intervention. Here, the
researcher may consider implementing a pilot study. A pilot study is a

Table 3. SAMPLE SIZE ESTIMATES FOR HYPOTHETICAL LOSS OF ATTACHMENT
STUDY*

� Value
Percent Mean

Difference 0.10 0.20

10 40 35
15 33 28
20 29 24
25 25 19

*The table is designed to show the number of subjects needed in each of two groups, assuming a
repeated measures design with hypothesis testing carried out at � � 0.05. Sample size estimates are
shown for each of two values of �, and each of several effect sizes.

� � probability of a type I error; � � probability of a type II error
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small-scale, preliminary study designed to assess the feasibility of the
proposed research and entails evaluating all aspects of the research
(including administrative matters if a clinical trial is being contem-
plated). One of the primary objectives is to acquire a database for use in
formal calculations of sample size needed for a larger experiment or
clinical trial to be carried out at a later date.

Although relatively small in scale, pilot studies often require as
much interaction between researcher and statistician as more formal
research, particularly in determining which variables will be assessed.
Stopping rules need to be established because, by definition, detailed
power analyses are not possible in a pilot study.

DATA MANAGEMENT

Data management is a deliberately broad term, incorporating a vari-
ety of tasks concerned with data acquisition, storage, confidentiality,
editing, and retrieval. These aspects of research execution are of vital
importance in assuring the quality of the research. Data management is
especially vital in large-scale projects involving the determination of
many variables from many research subjects and possibly at multiple
time points.

Data acquisition begins with the design and planning of data-
gathering forms. Completed forms need to be machine entered, although
machine-readable forms can facilitate this activity. Data should be
checked thoroughly. One procedure for checking is dual entry, in which
data forms are entered twice, by independent data technicians. The final
data files for the two operators are compared data point by data point.
With dual entry, the only way an incorrect value can enter the final file
is for each operator to make the identical mistake in the identical
location.

Although dual entry is an effective mechanism for data-entry qual-
ity control, it is not always feasible. In large studies or clinical trials, the
researcher should plan on printing a randomly selected subset of the
entire data file for verification against the data-gathering forms. It may
also be prudent to check all values of any variables that are particularly
significant. This checking will provide an estimate of the overall data-
entry error rate and may suggest variables or areas in the data file that
need further attention in the editing process.

Once a data file has been checked, edited, and found satisfactory,
further examination should involve the search for potential outlying
values. This search can be done for all variables in the file and is a basic
procedure in the exploratory data analysis phase of the research. All
values above the 95th percentile and below the 5th percentile (or some
other specified cutoff points) are listed, together with identifying infor-
mation indicating which record in the data file contains the value. The
researcher can then consider this output and flag blatantly out-of-range
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values for further checking. This procedure should be followed for all
major study variables.

Data confidentiality is important in clinical trials involving human
subjects. Assuring confidentiality usually entails an intermediate step in
the data-entry process in which identifying information is replaced with
some numeric patient identifier. This is the responsibility of the re-
searcher, who establishes and maintains the key relating the two data
fields. Access to the key is limited by and is under the direction of the
researcher. The file supplied to the statistical consultant should contain
no unique patient data that could be used for identification or to breach
subject anonymity.

RESEARCH ADMINISTRATION

The biostatistical consultant can help the researcher with other as-
pects of the actual administration and execution of the research project.
Several such topics noted here arise in clinical trials and include the
randomization of patients, protocol deviations, and the analysis of drop-
outs and missing data.

The randomization of patients refers to the assignment of patients
to study groups, usually by some random mechanism. Randomization
is generally a straightforward task, and the method of randomization
depends largely on the study design. Both the researcher and the statisti-
cal consultant need to keep careful track of any protocol deviations.
Protocol deviations involve changes in the study design or plan once
subject intake has begun. These planning changes are sometimes un-
avoidable.

Subject dropout can be a major problem in longitudinal clinical
trials. Patients can leave for a variety of reasons. Some may decide not
to continue participating, especially if the experiment involves some
unpleasant or invasive procedures. Others may leave the area. Some
may become injured or ill. The researcher and the biostatistician will
hope fervently that such dropout is random; that is, one is not primarily
losing the treatment responders or non-responders or only the most
compliant or non-compliant participants. Random dropout implies that
subjects who leave a clinical trial before completion of the protocol do
so at random, and that the remaining subject groups are still homoge-
neous with respect to potentially confounding factors.

The term intent to treat refers to the analysis of data from all subjects,
including those who drop out. The rationale for this method of analysis
is discussed in most clinical trial guides; see, for example, Spilker’s
Guide to Clinical Trials19 and Piantadosi’s Clinical Trials: A Methodological
Perspective.15 Most researchers will also analyze those subgroups of parti-
cipants completing the protocol. A crucial phase of the analysis of data
from a clinical trial is the analysis of dropouts and their comparison
with subjects who remained.
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Missing data can be a problem in surveys or retrospective studies.
The difficulty, as with patient dropouts, arises when missing data occur
in a nonrandom fashion. Although the treatment of missing data (involv-
ing, for example, multiple imputation procedures) is the responsibility
of the biostatistician, the researcher needs to participate in planning the
procedures for carrying out the study so that that the occurrence of
missing data is minimized or the variables prone to absence are of
relatively minor importance in the study.

DISCUSSION

The primary theme of this article is that it is not essential that the
researcher have a strong working knowledge of elementary (or higher)
statistics to perform valid scientific research. Rather, the researcher
should be prepared to work with a biostatistical consultant on an exten-
sive and ongoing basis to plan and execute a research project carefully.
The need for this emphasis was recognized by Moses and Louis, who
suggested that effective collaboration between clinician and statistician
can help identify tractable scientific and statistical problems that need
attention and can help avoid undertaking intractable ones.13 Further-
more, they assert that the ‘‘central requirement for successful collabora-
tion is clear, broad, specific, two-way communication on both scientific
issues and research roles.’’13

The researcher will need to assist the biostatistician in estimating
sample size, in understanding the basics of the science involved, and in
relating scientific and statistical hypotheses. The biostatistician should
come to appreciate the scientific and clinical issues and underlying
principles; likewise, the researcher will come to appreciate how appro-
priately executed data analysis can extract valuable scientific knowledge
from experimental data.

Over time, the researcher will acquire the statistical knowledge
needed to interpret and present study results. The statistical understand-
ing may be focused and restricted to the methods relevant to the particu-
lar study, but it will constitute a useful body of knowledge, appropriate
for future studies or as a basis for using other statistical methods in
different studies.

Most, if not all, scientists are convinced of the utility of mathematical
models in representing and studying natural phenomena. Statistical
models are mathematical models that incorporate probabilistic measures
of uncertainty. In the study of oral health, two primary sources of
variation impart this uncertainty. The first is the natural variation among
patients in measures of oral health; the second is the variation resulting
from sampling, or selecting a subgroup of patients for study, because
the entire population of such patients is impossible to access.

The progression of data analyses intended to account for this varia-
tion, from simple independent group t-tests through complex multivari-



154 CLIVE

ate methods, is one of increasing technologic, mathematical, and statisti-
cal sophistication and advancement. It is also a progression that
describes considerable theoretic and applied advances by researchers
attempting to understand dental disease and how to deal with it. Often,
theoretic clarification and understanding derive from the application of
more detailed models, as new information about the processes being
modeled derive from formalization and logical representation.

The influence of this trend of increasing detail and complexity in
data analysis for dental research will become more profound in the
immediate future, as new developments in dental science occur simulta-
neously with new advances in statistical theory and computer science.
This progression will only increase the need for dental researchers to
establish and develop lines of communication with data analysts.
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