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A majority of craniomaxillofacial reconstructive procedures are per-
formed to replace or construct missing or damaged skeletal structures.
These operations require the harvesting of bone or soft tissue from distant
donor sites. The donor site operation often results in greater morbidity
than the primary reconstructive procedure and there may not be adequate
quantities of bone available for harvesting in children. Furthermore, there
is unpredictable loss of bone graft volume during the remodeling process.

Langer and Vacanti define tissue engineering as ‘‘an interdisciplinary field
that applies the principles of engineering and the life sciences toward the de-
velopment of biological substitutes that restore, maintain or improve tissue
function’’ [1]. One tissue engineering strategy is based on harvesting

This work was funded in part by the Center for Integration of Medicine and Innovative

Technology (CIMIT), Therics Corp, the Hanson Foundation, and the Massachusetts General

Hospital Oral and Maxillofacial Surgery Education and Research Fund.

* Corresponding author. Department of Oral and Maxillofacial Surgery, Massachusetts

General Hospital, Warren Building 1201, 55 Fruit Street, Boston, MA 02114.

E-mail address: mtroulis@partners.org (M.J. Troulis).
0011-8532/06/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.cden.2005.11.006 dental.theclinics.com

mailto:mtroulis@partners.org


206 ABUKAWA et al
progenitor or stem cells, expanding and then, differentiating them into cells
that have the potential to form new tissue (eg, bone) or organ (eg, tooth).
The harvested cells are seeded on scaffolds. These scaffolds are fabricated
in the laboratory to resemble the structure of the desired tissue or organ to
be replaced. Much of the current tissue engineering research is directed to-
ward the areas of cell manipulation (isolation, expansion, and differentiation)
and scaffold design (biomaterials, design, and fabrication). This article re-
views biomaterials available for use in craniomaxillofacial tissue (bone) engi-
neering, coatings applied to scaffolds, and scaffold fabrication techniques.

Biomaterials for bone tissue engineering

The role of the scaffold in tissue engineering is to provide a matrix of
a specific geometric configuration on which seeded cells may grow to pro-
duce the desired tissue or organ. The physical and chemical characteristics
of a scaffold play a significant role in cell proliferation and tissue in-growth.

Biomaterials used as scaffolds for bone tissue engineering are classified
into two broad categories: naturally derived and synthetic. Advantages of
naturally derived scaffolds include the ability to support cellular invasion
and proliferation. Synthetic materials offer ease of processing and mechan-
ical strength [2].

Biomaterials used in tissue engineering also may be divided into ceramics
and polymers [3]. These biomaterials may be produced in solid blocks,
sheets, porous sponges or foams, or hydrogels. Historically, many of these
substances have been used as bone substitutes, sutures, meshes, fixation de-
vices, and dressings.

Bone is composed of an organic (polymer) component, primarily colla-
gen, and a mineral (ceramic) component, primarily hydroxyapatite (HA)
[4]. Currently, these individual components are being studied for use as scaf-
folds in tissue engineering. Novel biodegradable materials with improved
mechanical properties, cell-interaction properties, and process ability also
are being developed [5].

Scaffolds for use in bone tissue engineeringmust allow for: (1) easy cell pen-
etration, distribution, and proliferation [6]; (2) permeability of the cultureme-
dium [7]; (3) in vivo vascularization (once implanted) [8,9]; (4) maintenance of
osteoblastic cell phenotype; (5) adequate mechanical stiffness [10]; (6) proper
biodegradation (rate and inflammatory response) and eventual total replace-
ment by bone [11]; and (7) ease of fabrication (including 3-D printing). To
date, the ideal scaffold that meets all these criteria has not been developed.

Biomaterials used as scaffolds: ceramics

Natural or synthetic HA and beta-tricalcium phosphate (b-TCP) are ce-
ramics used in bone tissue engineering. Ceramic biomaterials structurally
are similar to the inorganic component of bone. They are biocompatible,
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osteoconductive, and may bind directly to bone. They are protein-free and,
thus, stimulate no immunologic reaction [12]. Furthermore, ceramic mate-
rials have long degradation times (many years) in vivo [3].

HA is a well-known biomaterial used for many decades as a bone substi-
tute for small defects of the jaws. It may be derived from bovine bone (de-
proteinized) or coralline or made as a pure synthetic. It was one of the first
biomaterials used as a scaffold, seeded with osteoprogenitor cells from peri-
osteum or bone marrow, for bone and cartilage engineering [3,13]. Cur-
rently, investigators (primarily in Japan and Europe) continue to study
HA for use as a scaffold in bone tissue engineering [14,15]. Major disadvan-
tages of HA are that it is brittle, it has little mechanical strength, it does not
resorb, and the pore size cannot be controlled easily by conventional pro-
cessing methods [16].

Harris and Cooper assessed the osteogenic potential of bone marrow–
derived human mesenchymal stem cells (hMSC) seeded on HA scaffolds
[17]. The constructs (hMSC þ HA scaffolds) were implanted into a dorsal
pouch in the skin of mice for 5 weeks. Regardless of the type of HA scaffold
used (coralline HA, bovine bone-derived HA, or synthetic HA/TCP), histo-
morphometric analysis revealed minimal bone formation. The most bone
formation (only 13.8% of total surface area) was documented in the synthetic
HA/TCP scaffolds [17]. In contrast to this study, Boo and colleagues show
‘‘active bone formation’’ when using a HA scaffold [18]. Others find a higher
cell density on HA scaffolds when combined with TCP and fibrin [19].

TCP is a naturally occurring material comprising calcium and phospho-
rous and is used as a ceramic bone substitute in craniomaxillofacial and or-
thopedic surgery. This material has the advantage that it can be made into
specifically shaped scaffolds by 3-D printing technology. Olsen and co-
workers use b-TCP to fabricate 3-D printed scaffolds for in vitro bone en-
gineering using porcine bone marrow progenitor cells. TCP scaffolds are
shown to maintain their shape and allow for good cell penetration and
bone formation in this in vitro model. The comparison of b-TCP scaffolds
with PLGA (D,L-lactic-co-glycolic acid) scaffolds shows that similar cell
penetration and bone formation occur with both materials [20].

Boo and colleagues compared b-TCP and HA as scaffolds for bone engi-
neering. The scaffolds were seeded with MSC and implanted in subcutane-
ous sites. Histologic examination after 8 weeks revealed active bone
formation in HA and TCP scaffolds [18].

TCP degrades either through osteoclastic resorption (phagocytosis) or by
chemical dissolution by the interstitial fluid [21]. b-TCP is expected to de-
grade 3 times faster than HA; however, degradation in vivo remains contro-
versial [22,23]. In vivo experiments using rabbits demonstrate that TCP may
resorb and be replaced by newly formed bone within 3 months [24]. Hand-
schel and coworkers, however, show that no TCP degradation occurred,
even after 6 months, under nonloading conditions in a rat model. Generally,
the predictability of ceramic degradation is poor [25]. Furthermore, the
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extent of degradation depends on many factors, such as crystallinity, poros-
ity, density, form, size, the host, and implantation site [26]. Furthermore,
HA and TCP are not strong enough scaffolds to provide mechanical
strength when replacing load bearing skeletal structures.

Biomaterials used as scaffolds: polymers

The commonpolymers studied for craniomaxillofacial bone tissue engineer-
ing include synthetic polyesters, such as polyglycolic acid (PGA), polylactic
acid (PLA) [27], and polycaplactone (PCL) [28]. Natural polymers, such as col-
lagen and hyaluronic acid, alginate, and agarose, also are studied as scaffolds.
Recently, copolymers of polyethylene oxide and polypropylene oxide, known
as pluronics, have been developed in the form of injectable hydrogels [29].

Polymers seeded with chondrocytes were used to engineer a human ear,
temporomandibular joint disc, and meniscal-shaped constructs [30–32]. Ad-
vantages of synthetic polymers include the ease and control of synthesis,
their unlimited supply, and non–cell-mediated degradation. Biodegradable
synthetic polymers can be formulated to possess desirable pore features
and shape [33–35]. Disadvantages include lack of mechanical strength, dif-
ficulty in 3-D fabrication (specifically, 3-D printing), uncontrollable shrink-
age, questionable cell-polymer interactions, and possible local toxicity
resulting from acidic degradation products [35].

PGA has been used for many years as a resorbable suture (for example,
Dexon [American Cyanamid, Pearl River, New York]). It is the first poly-
meric scaffold used to tissue engineer cartilage [3]. PGA is insoluble in water,
and glycolic acid is the final product of degradation resulting local acidosis
and potential tissue damage [35].

PLA is the polymer of lactic acid and is used as a scaffold. PLA is more
hydrophobic than PGA and more resistant to hydrolysis. It is degradated
into lactic acid, which also can be locally toxic to tissues [35].

PLGA is a copolymer of PGA and PLA. The suture material, Vicryl
(Ethicon, Somerville, New Jersey), is composed of PLGA. Abukawa and co-
workers used PLGA tomake a 3-D scaffold in the shape of a porcine mandib-
ular condyle (Fig. 1). The scaffold was seeded with porcine MSC in this
autologous model. Bone formation occurred, however, only at the surface
of the construct after 6 weeks of in vitro culture [36]. Abukawa and colleagues
designed and fabricated a novel scaffold composed of PLGA with heteroge-
nous pore sizes (small, 20-m to 200-m diameter, and large, 1-mm to 2-mm di-
ameter), called the fused interconnected scaffold. MSC harvested from the
ilium of a minipig were combined with these scaffolds. After only 10 days
in a bioreactor, cultured constructs were implanted into mandibular defects
of the same minipig and allowed to heal for 6 weeks. Histologic examination
showed bone to bridge the defects (Fig. 2) [37]. The degradation rate or resul-
tant local tissue effects were not studied, however. Furthermore, these scaf-
folds lacked strength and are not amenable to easy 3-D printing technology.
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Currently available scaffold materials are less than ideal because of inad-
equate bone formation, lack of sufficient penetration of cells and bone
throughout the scaffold, inadequate degradation properties, or inadequate
mechanical stiffness.

Fig. 2. Reconstruction of mandibular defects with autologous tissue-engineered bone. Recon-

structed mandible with empty control (E), experimental contructs (C1 and C2), and control

scaffold only (S). (From Abukawa H, Shin M, Williams WB, et al. Reconstruction of mandib-

ular defects with autologous tissue-engineered bone. J Oral Maxillofac Surg 2004;62:604; with

permission.)

Fig. 1. Formation of a mandibular condyle in vitro by tissue engineering. Engineered construct

consisting of bone and scafffold. Bar ¼ 15 mm. (From Abukawa H, Terai H, Hannouche D,

et al. Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac

Surg 2003;61:98; with permission.)
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New technologies for scaffold fabrication

New scaffold fabrication techniques are being developed, such as solid
freeform fabrication (SFF). Products are designed on a computer screen
as 3-D models with information from CT or MRI scans. Ideally, after im-
plantation, a construct is organized into normal healthy tissue as the scaf-
fold degrades. The goal of this technology is to fabricate a scaffold with
accurate patient specific macrostructure (3-D shape) and microstructure
(porosity and interconnected channels) for ideal nutrient flow and tissue
and vascular in-growth.

This technology is relatively new and SFF machines for medical applica-
tions are available only at a few institutions, such as University of Michigan
and Massachusetts Institute of Technology. Hollister’s group uses this
technology to tissue engineer bone with HA [38], PLA [39], and PCL [10].
Hollister’s group finds this technology successful in producing bone in an
immunocompromised mouse model [38]. Lin and coworkers also demon-
strate that this method could produce highly porous structures that match
human trabecular bone by introducing the homogenization-based topology
optimization alogorithm [40]. Scheck and colleagues [40a] use genetically
modified primary human gingival fibroblasts and HA scaffolds to produce
bone. Williams and coworkers use PCL scaffolds and bone morphogenetic
protein-7 (BMP-7)–induced human gingival fibroblasts cells to produce
bone [10].

One SFF technique, the 3-D printing technology, is a manufacturing pro-
cess that creates parts directly from a computer model used in the produc-
tion of a complex 3-D scaffold. The parts are built by spreading a layer of
powder repetitively and selectively joining the powder in the layer through
the inkjet printing of a binder material [41]. Moreover, using multiple feeds,
it becomes possible to manufacture scaffolds with various architectural qual-
ities that can maintain multiple cell types on each layer, thus closely mimick-
ing the anatomic features of a tissue or organ. Tissue engineering bone using
this technique demonstrates ability of bone formation in vitro using porous
PLGA/TCP composite scaffolds [42].

Lessons learned: implant coatings

The application of coatings to dental and orthopedic implants began ap-
proximately 20 years ago and has become a common practice in implant
production [43]. The aim of coating implants was to increase biocompatibil-
ity and improve bone formation at the implant-bone interface.

HA is used more than any other coating to enhance osseointegration of
titanium dental implants [44]. Several recent studies to measure the effect
HA coatings have on titanium implants. One study followed 120 patients
who received a total of 634 implants to assess the effect of implant coating
(HA) on osseoointegration. Osseointegration was measured as a function of
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probing depth and micromobility. One year after implantation, results re-
vealed a significantly smaller degree of micromobility in the HA-coated im-
plants compared with noncoated ones [45]. This difference between the two
groups declined steadily, and 3 years after implantation, the groups had no
significant difference in micromobility. It was concluded that HA acceler-
ated the initial rate of osseointegration.

Schwartz-Arad and colleagues compared marginal bone loss and 12-year
survival rates of HA-coated implants to those of pure titanium implants.
The average marginal bone loss was significantly higher (P ! .001) among
the HA-coated implants compared with the pure titanium implants, but the
12-year survival rates for the HA-coated implants were significantly higher
than for those with the pure titanium implants [46].

Issues concerning the degradation of implant coatings have been raised,
as it is believed that HA coatings tend to ‘‘peel’’ away and, because this
product is not biodegradable, may cause implant failure [47].

One of the potential benefits of using implant coatings is that the mate-
rials can be used as a drug delivery system. This would be most useful in tis-
sue engineering scaffolds. These may include growth factors and osteogenic
supplements. In a recent experiment, recombinant human BMP-2 (rhBMP-2)
was incorporated into the structure of calcium phosphate coatings used to
coat titanium implants. The objective of this experiment was to combine
these osteoinductive properties of rhBMP-2 with the osteoconductive
properties of calcium phosphate coatings. It was found that the bioactive
properties of rhBMP-2 were not affected by the process of being integrated
with the HA [48].

In a similar experiment, hepatocyte growth factor (HGF) was incorpo-
rated into discs made of HA. HGF is a growth factor known to promote
angiogenesis. This is a desirable property for implant coatings, because vas-
cularization is an essential part of the bone formation. In this experiment,
the effect of the HGF on osteoblast differentiation was observed in vitro.
The results show that the HGF coatings induced alkaline phosphatase activ-
ity to a much greater extent than the plain HA coatings [49].

Recently, Wang and coworkers studied the prospect of using a mother-
of-pearl coating on dental implants [47]. Previous studies found that nacre
(mother of pearl) could stimulate bone cell differentiation and induce
bone formation [50]. An advantage to nacre coatings is that the material
is biodegradable, so it should not remain trapped at the implant/bone inter-
face and interfere with long-term implant integration.

Smart scaffolds: the future

One of the basic roles of a scaffold in bone tissue engineering is to act as
a carrier for cells and to maintain the space and create an environment in
which the cells can proliferate and produce the desired bone matrix. Trans-
planted cells often lose the desired function upon transfer from the in vitro
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culture system to the in vivo recipient site [51,52]. To address these prob-
lems, scaffolds with the ability to deliver biochemical factors at a predeter-
mined rate for a definitive time period are being developed [53]. These smart
scaffolds have the advantage of being able to: (1) promote early capillary in-
vasion [54], (2) maintain cell activity and desired phenotype [55], and (3) in-
duce osteoblastic differentiation of existing progenitor cells in the recipient
tissue [56,57].

Early reconstitution of the capillary system (ie, vascularization) is critical
for tissue-engineered bone survival and function. Smith and colleagues re-
port that sustained delivery of vascular endothelial growth factor enhances
vascularization at the location of transplanted cells, which contributes to
their survival [9]. The transplanted cells, therefore, subsequently proliferate
and produce bone matrix at the reconstruction site.

Adult stem cells can be differentiated into osteoblasts when triggered by
osteogenic supplements (100 nM dexamethasone, 50 mg/mL ascorbic acid,
and 10 mM beta-glycerophosphate) [58,59]. Based on this data, Kim and
colleagues designed a biodegradable poly (PLGA) scaffold that releases os-
teogenic media (containing dexamethasone and ascorbic acid) in vitro and
in vivo [55,60]. Similarly, Zhang and coworkers used an ascorbic acid-con-
taining polymer scaffold (lysine-di-isocyanate [LDI]-glycerol-polyethylene
glycol [PEG]-ascorbic acid [AA]) that supports osteoblast proliferation
and bone formation [61].

BMP are shown to initiate osteogenic differentiation in stem cells [62,63].
Furthermore, BMP have the unique ability to induce de novo bone and car-
tilage formation when implanted at ectopic sites [56,57]. A PLGA scaffold
system capable of sustained BMP-4 is combined with bone marrow cells
and reported to promote bone formation [54,64].

Bone tissue development is a highly coordinated process that involves
various biologic factors. The ability to deliver multiple growth factors to
a recipient site also may be a promising strategy to enhance bone formation,
and the combination BMP-4 and vascular endothelial growth factor re-
leased from PLGA scaffolds is reported to enhance bone formation [54,64].

Release kinetics in drug delivery systems are predictable in vitro. In vivo,
however, the environment is more complex, making it more difficult to pre-
dict the material degradation process. Therefore, maintaining drug release
within the therapeutic range is one of the keys of an effective drug delivery
system for tissue engineering bone in vivo. In fact, degradation products of
polymers create an acidic environment in vivo [65,66]. An acidic environ-
ment associated with biodegradation increases the release of rhBMP-2
from the PLGA/calcium-phosphate cement composite in vitro compared
with PLGA [67]. Zhang and colleagues demonstrate that the degradation
products of LDI-glycerol-AA polymer do not affect the pH [68]. For effec-
tive controlled release, further experiments using biodegradable materials
should be performed to optimize drug delivery system, for bone tissue
engineering.
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These ‘‘smart’’ materials may revolutionize tissue-engineering research,
because controlled release of biochemical and growth factors from a scaffold
may enhance cell penetration, proliferation, differentiation, and bone matrix
production and improve vascularization of grafts.
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