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Current knowledge about the pathogenesis of periodontal diseased
obtained mainly from the results of animal experiments, analysis of peri-
odontal histopathology, epidemiologic studies, and clinical trialsddescribes
a complex and multifactorial etiology [1]. Generally, the extent and severity
of periodontitis increases with age and relates to the control of pathogens
associated with dental plaque biofilms [2]. Periodontal disease is found
with high prevalence and variability, with few individuals experiencing
advanced destruction [3]. Periodontal disease is characterized by an inflam-
matory reaction of periodontal tissues that leads to destruction of tooth-
associated structures, including alveolar bone, tooth root cementum, and
periodontal ligament (PDL) [4]. Current views consider a course of the dis-
ease that is chronic with brief episodes of localized exacerbation and remis-
sion [5,6]. Consequently, if the disease is left untreated, tooth loss can occur.
Despite the remarkably high standards of professional periodontal care cur-
rently available, incomplete adult dentitions or edentulism are still evident in
the United States and worldwide populations.
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A challenge faced by periodontal therapy is the predictable regeneration
of periodontal tissues lost as a consequence of disease, including alveolar
bone, PDL, and cementum. Thus far, the ability to regenerate completely
the damaged periodontal supporting structures has not been achieved in hu-
mans. The application of various regenerative biomaterials, such as bone au-
tografts, allografts, cell occlusive barrier membranes used in guided tissue
regeneration procedures, applications of growth factors (eg, enamel matrix
proteins), or their combinations, have been pursued with varying degrees
of success to regenerate lost tooth support, however [7]. Examples of cur-
rently available regenerative biomaterials are shown in Table 1 [8–37]. In
summary, these therapeutic measures are shown to be limited in the predict-
ability of healing and regenerative response in modern clinical practice, be-
cause the oral environment presents several complicating factors that
border regeneration: (1) Periodontal wounds are contaminated with tooth-
associated biofilms of anaerobic bacteria. (2) Transmucosal hard-soft tissue

Table 1

Various biomaterials available for clinical periodontal regenerative therapy

Regenerative biomaterials Components References

Bone allografts Demineralized freeze dried

bone allograft

Gurinsky et al, 2004 [8]

Kimble et al, 2004 [9]

Trejo et al, 2000 [10]

Bone xenografts Bovine mineral matrix Hartman et al, 2004 [11]

Camelo et al, 2001 [12]

Mellonig, 2000 [13]

Nevins et al, 2000 [14]

Richardson et al, 1999 [15]

Bone alloplast grafts Beta tricalcium phosphate Palti and Hoch, 2002 [16]

Scher et al, 1999 [17]

Nery et al, 1992 [18]

Bioactive glass Sculean et al, 2005 [19]

Reynolds et al, 2003 [20]

Trombelli et al, 2002 [21]

Fetner et al, 1994 [22]

Nonresorbable cell

occlusive barrier

membranes

Polytetrafluorethylene Trombelli et al, 2005 [23]

Moses et al, 2005 [24]

Murphy and Gunsolley, 2003 [25]

Needleman et al, 2002 [26]

Resorbable cell occlusive

barrier membranes

Polyglycolide/polylactide

(synthetic)

Minenna et al, 2005 [27]

Stavropoulos et al, 2004 [28]

Parashis et al, 2003 [29]

Collagen membrane

(xenogen)

Sculean et al, 2005 [30]

Owczarek et al, 2003 [31]

Camelo et al, 1998 [32]

Enamel proteins Enamel matrix derivative Rasperini et al, 2005 [33]

Rosing et al, 2005 [34]

Sanz et al, 2004 [35]

Francetti et al, 2004 [36]

Tonetti et al, 2002 [37]
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environment allows entry of pathogens into wounds. (3) Multiple junctional
complexes and stromal-cellular interactions create difficulty in rebuilding tis-
sue interfaces (eg, tooth-PDL-bone and epithelial-connective tissue-bone).
(4) The effects of occlusal forces deliver intermittent loads in axial and trans-
verse dimensions [38,39].

The role of growth factors used in periodontal regenerative medicine

After periodontal therapy (eg, deep scaling or periodontal flap surgery),
a blood coagulum forms at the wound site and releases tissue growth factors
locally, such as platelet-derived growth factor (PDGF) and transforming
growth factor-b from degranulating platelets [40,41]. These mitogenic poly-
peptides attract mesenchymal cells and fibroblasts to migrate into the peri-
odontal wound and stimulate their proliferation [42]. The continuing
process of periodontal tissue repair is followed by the formation of granu-
lation tissue as a source for future periodontal connective tissue cells, such
as osteoblasts, PDL fibroblasts, and cementoblasts [43]. For alveolar bone
regeneration, mesenchymal cells are induced into osteoprogenitor cells by
locally expressed bone morphogenetic proteins (BMPs) [44,45].

Wound-healing approaches that use growth factors to target restoration
of tooth-supporting bone, PDL, and cementum can advance greatly the field
of periodontal regenerative medicine. A major focus of periodontal research
has evaluated the impact of growth factor applications on periodontal tissue
regeneration [39,46–48]. Articles describe various delivery systems and ap-
plications of growth factors, which are highlighted in Table 2. Advances
in molecular cloning have made available unlimited quantities of recombi-
nant growth factors for applications in tissue engineering. Recombinant
growth factors known to promote skin and bone wound healing, such as
PDGFs [49–53], insulin-like growth factors [46,50,54,55], fibroblast growth
factors [56–60], and BMPs [61–65], have been used in preclinical and clinical

Table 2

Effects of growth factors used for periodontal tissue engineering

Growth factor Effects

Platelet-derived growth factor Migration, proliferation, and noncollagenous matrix

synthesis of mesenchymal cells

Insulin-like growth factor-1 Cell migration, proliferation, differentiation, and matrix

synthesis

Fibroblast growth factor-2 Proliferation and attachment of endothelial cells and

PDL cells

Transforming growth factor-beta Proliferation of cementoblasts and PDL fibroblasts

Bone morphogenetic protein Differentiation of osteoblasts, differentiation of PDL

cells into osteoblasts

Enamel matrix derivative Proliferation, protein synthesis, and mineral nodule

formation in PDL cells, osteoblasts, and

cementoblasts
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trials for the treatment of large periodontal or intrabony defects and around
dental implants [66,67].

Biologic effects of growth factors: platelet-derived growth factors

PDGF is a member of a multifunctional polypeptide family that binds to
two cell membrane tyrosine kinase receptors (PDGF-Ra and PDGF-Rb)
and subsequently exerts its biologic effects on cell proliferation, migration,
extracellular matrix synthesis, and anti-apoptosis [68–71]. PDGF-a and -b
receptors are expressed in regenerating periodontal soft and hard tissues
[72]. PDGF also initiates tooth-supporting PDL cell chemotaxis [73], mito-
genesis [74], matrix synthesis [75], and attachment to tooth dentinal surfaces
[76].More importantly, in vivo application of PDGF alone or in combination
with insulin-like growth factor-1 results in partial repair of periodontal tissues
[49,50,55,77,78]. PDGF has been shown to have a significant regenerative im-
pact on PDL cells and osteoblasts [42,52,74,79].

Biologic effects of growth factors: bone morphogenetic proteins

BMPs are multifunctional polypeptides that belong to the transforming
growth factor-b superfamily of proteins [80]. The human genome encodes
at least 20 BMPs [81]. BMPs bind to type I and II receptors that function
as serine-threonine kinases. The type I receptor protein kinase phosphory-
lates intracellular signaling substrates called Smads (Sma gene in C elegans
and Mad gene in Drosophila). The phosphorylated BMP-signaling Smads
enter the nucleus and initiate the production of bone matrix proteins leading
to bone morphogenesis. The most remarkable feature of BMPs is the ability
to induce ectopic bone formation [82]. BMPs not only are powerful regula-
tors of cartilage and bone formation during embryonic development and re-
generation in postnatal life but also participate in the development and
repair of other organs, such as the brain, kidney, and nerves [83]. Studies
have demonstrated the expression of BMPs during tooth development and
periodontal repair, including alveolar bone [84,85]. Investigations in animal
models have shown the potential repair of alveolar bony defects using re-
combinant human BMP-12 (rhBMP-12) [63] or rhBMP-2 [86,87]. In a recent
clinical trial by Fiorellini and colleagues [88], rhBMP-2 delivered by a bioab-
sorbable collagen sponge revealed significant bone formation in a human
buccal wall defect model after tooth extraction when compared with colla-
gen sponge alone. BMP-7, also known as osteogenic protein-1, stimulates
bone regeneration around teeth and endosseous dental implants and in max-
illary sinus floor augmentation procedures [56,89,90].

Clinical applications of growth factors for use in
periodontal regeneration

In general, the impact of a topical delivery of growth factors to periodon-
tal wounds has shown to be promising yet insufficient for the promotion of
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predictable periodontal tissue engineering [48,51]. Growth factor proteins,
once delivered to the target site, tend to suffer from instability and quick di-
lution, presumably because of proteolytic breakdown, receptor-mediated
endocytosis, and solubility of the delivery vehicle [39]. Because their half-
lives are significantly reduced, the period of exposure may not be sufficient
to act on osteoblasts, cementoblasts, or PDL cells. Different methods of
growth factor delivery must be considered [91].

Investigations for periodontal bioengineering have examined various
methods of combining delivery vehicles (eg, scaffolds) with growth factors
to target the defect site to optimize bioavailability [92]. The scaffolds are de-
signed to optimize the dosage of the growth factor and control its release
pattern, which may be pulsatile, constant, or time programmed [93]. The ki-
netics of the release and the duration of the exposure of the growth factor
also may be controlled [94].

A new polymeric system was reported in an animal study by Richardson
and colleagues [95] that enabled the tissue-specific delivery of two or more
growth factors, with a controlled dose and rate of delivery. The dual delivery
of vascular endothelial growth factor (VEGF) together with PDGF from
a single, structural polymer scaffold results in the rapid formation of a ma-
ture vascular network.

Gene therapy methods investigated for periodontal tissue regeneration

The single administration of purified tissue growth factors has not been
shown to be clinically effective in supporting the horizontal regeneration
of periodontal tissue breakdown. This may be caused by insufficient capabil-
ities to maintain therapeutic protein levels at the wound site and the
three-dimensional architecture of the defects. Gene transfer methods may
circumvent many of the limitations with protein delivery to soft tissue
wounds [96,97]. The application of growth factors [45,98–100] or soluble
forms of cytokine receptors [101] by gene transfer provides a greater sustain-
ability than that of single protein application. Gene therapy may achieve
greater bioavailability of growth factors within periodontal wounds, which
may provide greater regenerative potential (Fig. 1).

Gene delivery methods

In general, gene therapy involves the transfer of genetic information to
target cells, which enables them to synthesize a protein of interest to treat
disease [102–104]. The technology can be used to treat disorders that result
from single point mutations [105] or to increase protein production [106].
The preferred strategy for gene transfer depends on the required duration
of protein release and the morphology of the target site. Gene transfer is ac-
complished through the use of viral and nonviral vectors. Examples of viral
vectors are retroviruses, adenoviruses (Ad) and adeno-associated viruses
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(AAV), and nonviral vectors include plasmids and DNA polymer complexes
(Table 3) [107].

Retroviruses introduce RNA together with two enzymes, called reverse
transcriptase and integrase, into the target cell. Initially, the reverse tran-
scriptase enables the production of a DNA copy from the retrovirus
RNA molecule. Subsequently, the integrase adds the DNA copy into
the target cell DNA. When the genetically altered host cell divides later,
its descendants contain the modified DNA. Because the integrase enzyme
may insert the DNA copy into an arbitrary position of the target cell
DNA, gene disruption and uncontrolled cell division (ie, cancer) may
occur [107].

Ad contains DNA, which is introduced into the target cell and subse-
quently transferred into its nucleus. In contrast to the fate of the retro-
virus DNA copy, the Ad-DNA is not incorporated into the host cell’s
genetic material. Consequently, when the Ad-infected target cell divides
later, its descendants are not genetically altered, nor do they contain
the Ad-DNA genetic material [108]. AAV derive from the parvovirus
family and are small viruses with a single-stranded DNA genome that
causes no known human diseases [107–109]. The AAV infects dividing
and nondividing cells by integrating its genetic material on chromosomes
of the target cell. Types of recombinant AAV have been developed either

Fig. 1. Approaches for regenerating tooth-supporting structures. (A) Guided tissue regenera-

tion uses a cell occlusive barrier membrane to restore periodontal tissues. (B) Alternatively,

an example of gene therapy uses vector-encoding growth factors aimed at stimulating the regen-

eration of host cells derived from the periodontium.
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to remain extrachromosomal or integrate into nonspecific chromosomal
sites. Research has demonstrated that the AAV can be used to correct
genetic defects in animals [107,110]. One disadvantage of the AAV is
that it is small and possesses the capacity to carry no more than usually
two genes [109].

Because nonviral alternatives do not have the drawbacks of undesired
host immune reactions or potential tumorigenesis, they likely will be given
more consideration in the future. Plasmids and DNA polymer complexes
carry the genetic information in the form of DNA to express a foreign pro-
tein. Design features of nonviral delivery of DNA match various require-
ments, such as chromosomal integration or the ability to alter gene
expression [107].

Gene therapy for periodontal tissue engineering

Various gene delivery methods are available to administer growth factors
to periodontal defects and offer great flexibility for tissue engineering
(Fig. 2). The delivery method can be tailored to the specific characteristics

Table 3

Viral and nonviral gene therapy vectors used in tissue engineering

Vector Type Advantages/disadvantages

Retrovirus Viral Advantages:

Nonimmunogenic

Disadvantages:

Infects only dividing cells

Insertional mutagenesis

Adenovirus Viral Advantages:

Infects dividing and nondividing cells

Does not integrate into target cell genome

Disadvantages:

Potentially immunogenic

Adeno-associated virus Viral Advantages:

Infects dividing and nondividing cells

Low immunogenicity

Nonpathogenic in human

Disadvantages:

Difficult to produce at high titers

Small transgenes

Plasmid Nonviral Advantages:

Nonimmunogenic

Nonpathogenic

Disadvantages:

Low transduction efficiency

DNA polymer complexes Nonviral Advantages:

Infects dividing and nondividing cells

Cell-specific targeting

Disadvantages:

Low transduction efficiency
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of the wound site. For example, a horizontal one- or two-walled defect may
require the use of a supportive carrier, such as a scaffold. Other defect sites
may be conducive to the use of an Ad vector embedded in a collagen matrix.

More important from a clinical point of view is the risk associated with
the use of gene therapy in periodontal tissue engineering [111]. As with max-
imizing growth factor sustainability and accounting for specific characteris-
tics of the wound site, the DNA vector and delivery method must be
considered when assessing patient safety. In summary, studies that examine
the use of specific delivery methods and DNA vectors in periodontal tissue
engineering reflect the aim to maximize the duration of growth factor ex-
pression, optimize delivery method to periodontal defect, and minimize pa-
tient risk.

Recently, a combination of an AAV-delivered angiogenic molecule such
as VEGF, BMP signaling receptor (caALK2), and RANKL (receptor acti-
vator of nuclear factor kappa B ligand) were demonstrated to promote bone
allograft turnover and osteogenesis as a mode to enrich human bone allo-
grafts [112]. To date, combinations of VEGF/BMP [113] and PDGF/
VEGF [95] have been performed with highly positive synergistic responses
in bone repair. Promising preliminary results from preclinical studies reveal
that host modulation achieved through gene delivery of soluble proteins,
such as tumor necrosis factor receptor-1, reduces tumor necrosis factor

Fig. 2. The current paradigm of gene therapy used in periodontal tissue engineering. Ap-

proaches consider (A) methods of delivery, (B) gene therapy vector, (C) tissue growth factor,

(D) cellular target receptors, and (E) local effect. The choice of delivery method, DNA vector,

and growth factor should maximize expected effect, minimize patient risk, and reflect the char-

acteristics of the wound site.
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activity and inhibits alveolar bone loss [101]. These results are comparable
to the findings in the research on rheumatoid arthritis, in which pathogen-
esis, including high tumor necrosis factor activity and pathways for bone re-
sorption, is similar [114].

Preclinical studies that evaluate growth factor gene therapy for
tissue engineering

To overcome the short half-lives of growth factor peptides in vivo, gene
therapy that uses a vector that encodes the growth factor is utilized to stim-
ulate tissue regeneration. So far, two main strategies of gene vector delivery
have been applied to periodontal tissue engineering. Gene vectors can be in-
troduced directly to the target site (in vivo technique) [99], or selected cells
can be harvested, expanded, genetically transduced, and then reimplanted
(ex vivo technique) (Fig. 3) [98]. In vivo gene transfer involves the insertion
of the gene of interest directly into the body anticipating the genetic modi-
fication of the target cell. Ex vivo gene transfer includes the incorporation of
genetic material into cells exposed from a tissue biopsy with subsequent re-
implantation into the recipient.

Platelet-derived growth factor gene delivery
The application of PDGF-gene transfer strategies to tissue engineering

originally was generated to improve healing in soft tissue wounds, such as
skin lesions [115]. Plasmid [116] and Ad/PDGF gene delivery [117] have
been evaluated in preclinical and human trials. The latter approach has
been able to exhibit more safety favorable for clinical use, however. [111].

Early studies in dental applications using recombinant adenoviral vectors
that encode PDGF demonstrated the ability of these vector constructs to

Fig. 3. Gene delivery approaches for periodontal tissue engineering. (A) Ex vivo gene delivery

involves the harvesting of tissue biopsies, expansion of cell populations, genetic manipulations

of cells, and subsequent transplantation to periodontal osseous defects. (B) The in vivo gene

transfer approach involves the direct delivery of growth factor transgenes to the periodontal os-

seous defects.
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transduce potently the cells isolated from the periodontium (eg, osteoblasts,
cementoblasts, PDL cells, and gingival fibroblasts) [118,119]. These studies
revealed the extensive and prolonged transduction of periodontal-derived
cells. Chen and Giannobile [120] were able to demonstrate the prolonged ef-
fects of Ad delivery of PDGF for the better understanding of sustained
PDGF signaling. An ex vivo investigation by Anusaksathien and colleagues
[121] showed that the expression of PDGF genes was prolonged for up to 10
days in gingival wounds. Ad encoding PDGF-b transduced gingival fibro-
blasts and enhanced defect fill by induction of human gingival fibroblast
migration and proliferation. On the other hand, continuous exposure of
cementoblasts to PDGF-a had an inhibitory effect on cementum mineraliza-
tion, possibly via the upregulation of osteopontin and subsequent enhance-
ment of multinucleated giant cells in cementum-engineered scaffolds. Ad/
PDGF-1308 (a dominant-negative mutant of PDGF) inhibited mineraliza-
tion of tissue-engineered cementum possibly because of downregulation of
bone sialoprotein and osteocalcin with a persistence of stimulation of mul-
tinucleated giant cells. These findings suggested that continuous exogenous
delivery of PDGF-a may delay mineral formation induced by cemento-
blasts, whereas PDGF clearly is required for mineral neogenesis [122].

Jin and colleagues [99] demonstrated that direct in vivo gene transfer of
PDGF-B stimulated tissue regeneration in large periodontal defects. Descrip-
tive histology and histomorphometry revealed that human PDGF-B gene
delivery promotes the regeneration of cementum and alveolar bone, whereas
PDGF-1308, a dominant-negative mutant of PDGF-A, has minimal effects
on periodontal tissue regeneration (Fig. 4).

Bone morphogenetic protein gene delivery
An experimental study in rodents by Lieberman and colleagues [123]

demonstrated gene therapy for bone regeneration, with results revealing
that the transduction of bone marrow stromal cells with rhBMP-2 lead to
bone formation within an experimental defect comparable to skeletal
bone. Another group was similarly able to regenerate skeletal bone by di-
rectly administering Ad5/BMP-2 into a bony segmental defect in rabbits
[124]. Additional advances in the area of orthopedic gene therapy using viral
delivery of BMP-2 have provided further evidence for the ability of in vivo
and ex vivo bone engineering [125–128]. Franceschi and colleagues [100] in-
vestigated in vitro and in vivo Ad gene transfer of BMP-7 for bone forma-
tion. Ad-transduced nonosteogenic cells also were found to differentiate into
bone-forming cells and produce BMP-7 [45] or BMP-2 [125] in vitro and in
vivo. In another study by Huang and colleagues [129], plasmid DNA encod-
ing for BMP-4 administered with a scaffold delivery system was found to en-
hance bone formation when compared with blank scaffolds.

In an early approach to regenerate alveolar bone in an animal model, the
ex vivo delivery of Ad-encoding murine BMP-7 was found to promote peri-
odontal tissue regeneration in large mandibular periodontal bone defects



255GENE THERAPEUTICS FOR PERIODONTAL REGENERATION
[98]. BMP-7 gene transfer not only enhanced alveolar bone repair but also
stimulated cementogenesis and PDL fiber formation. Of interest, the alveo-
lar bone formation was found to occur via a cartilage intermediate. When
genes that encoded the BMP antagonist noggin were delivered, inhibition
of periodontal tissue formation resulted [130]. A recent study by Dunn
and colleagues [131] showed that direct in vivo gene delivery of Ad/BMP-7
in a collagen gel carrier promoted successful regeneration of alveolar
bone defects around dental implants. These experiments provide promising

Fig. 4. In vivo gene transfer of PDGF-B stimulates periodontal tissue regeneration. Histologic

microphotographs of periodontal alveolar bone defects treated for 14 days after gene delivery of

Ad/PDGF-B, Ad/PDGF-1308, or vector alone. (A, C, E, original magnification �40; B, D, F,

original magnification �200.) Brackets in the low-power (�40) slides indicate alveolar bone

wound edges, with no significant differences between the sizes of the defects based on histomor-

phometric analyses. Limited alveolar bone formation occurred in the Ad/PDGF-1308 and vec-

tor alone defects, whereas significant bone bridging was noted most extensively in sites treated

with Ad/PDGF-B (red dashed line). (F) A thin layer of newly formed cementum (black arrows)

was observed only in the Ad/PDGF-B–treated defects. More vascularization (blue arrows) was

seen in the periodontal ligament region of the Ad/PDGF-B–treated lesions. Asterisks indicate

the collagen carrier. (Adapted from Jin Q, Anusaksathien O, Webb SA, et al. Engineering of

tooth-supporting structures by delivery of PDGF gene therapy vectors. Mol Ther

2004;9(4):522; with permission.)
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evidence that shows the feasibility of in vivo and ex vivo gene therapy for
periodontal tissue regeneration and peri-implant osseointegration.

Future perspectives: targeted gene therapy in vivo

Major advances have been made over the past decade in the reconstruc-
tion of complex periodontal and alveolar bone wounds that have resulted
from disease or injury. Developments in scaffolding matrices for cell, pro-
tein, and gene delivery have demonstrated significant potential to provide
‘‘smart’’ biomaterials that can interact with the matrix, cells, and bioactive
factors. The targeting of signaling molecules or growth factors (via proteins
or genes) to periodontia has led to significant new knowledge generation us-
ing factors that promote cell replication, differentiation, matrix biosynthesis,
and angiogenesis. A major challenge that has been less studied is the mod-
ulation of the exuberant host response to microbial contamination that
plagues the periodontal wound microenvironment. For improvements in
the outcomes in periodontal regenerative medicine, scientists must examine
dual delivery of host modifiers or anti-infective agents to optimize the results
of therapy. Further advancements in the field will continue to rely heavily on
multidisciplinary approaches that combine engineering, dentistry, medicine,
and infectious disease specialists in repairing the complex periodontal
wound environment.

Summary

This article highlights the active developments in the field of periodontal
regenerative medicine. Significant advancements have been made within the
areas of scaffold design to promote targeted delivery of cells, genes, and pro-
teins to chronic periodontal wounds. Results from preclinical and early clin-
ical studies are presented, with special emphasis on the use of growth factors
to promote periodontal and peri-implant bone repair.
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